-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathResampling_Raster.R
117 lines (105 loc) · 5.7 KB
/
Resampling_Raster.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
## Resampling the GLERL 510x516 (Grid-510) to 1024x1024 (Grid-1024) using projection with Nearest Neighbor Search method
## Reference: ...
## Input: 1. GLERL 510x516 grid:
## - NOAA GLERL: https://www.glerl.noaa.gov/data/ice/#historical
## - National Snow and Ice Data Center
## 2. CoastWatch Water/land mask:
## - CoastWatch Land Mask: https://coastwatch.glerl.noaa.gov/ftp/masks/
## 3. Projection information of Grid-510 and Grid-1024:
## - See reference
## Output: 1. The ascii files of Resamped 1024x1024 grid
## 2. The ice cover plots of original 510x516 and resampled 1024x1024 grid
## Scripts can run under RStudio version 1.1.463
## Resampling_Raster.R July 2018 @ NOAA GLERL [email protected]/[email protected]
rm(list=ls())
library(raster)
library(fields)
library(gdata)
# Set the file dir
setwd('THE FOLDER DIR OF RESAMPLING_RASTER SCRIPT')
File_Dir <- 'THE FOLDER DIR OF 510X516 GRID DATA'
# Randomly choose g20180521.ct as 1024 referenced grid
r_1024 <- raster(matrix(scan(file=paste(File_Dir,'2018/', 'g20180521.ct',sep=""),skip=6),1024,1024, byrow=TRUE),
crs="+proj=merc +lon_0=0 +k=1 +x_0=0 +y_0=-24 +datum=WGS84 +units=m +no_defs",
xmn=-10288021.9553, xmx=-8444821.9553, ymn=4675974.1583, ymx=6519174.1583)
mask_1024 <- matrix(scan('THE FILE DIR OF 1024 LAND/WATER MASK'),1024,1024,byrow=TRUE)
# Set Parameters
year_str <- 1973
year_end <- 2007
dir.create("TXT_Raster")
dir.create("Fig_Raster")
for (year in year_str:year_end){
print(year)
File_Path = paste(File_Dir, year, '/', sep = '')
dir.create(paste("TXT_Raster/", year, sep = ''))
dir.create(paste("Fig_Raster/", year, sep = ''))
List_CT <- list.files(path = File_Path)
List_CT <- sub('.ct', '', List_CT)
for (k in 1:(length(List_CT))) {
file_name <- List_CT[k]
# Read 510x516 grid and rasterize
ori_data<-matrix(scan(file=paste(File_Path, file_name,'.ct', sep=""),skip=6),510,516, byrow=TRUE)
r_data <- raster(ori_data, crs="+proj=merc +lon_0=-84.14 +lat_ts=45.04 +x_0=0 +y_0=0 +ellps=clrk66 +units=m +no_defs",
xmn=-649446.25, xmx=666353.75, ymn=3306260, ymx=4606760)
# Project 510 grid to 1024 grid using nearest nighbor, which is used to compute values for the new rasterLayer
r_project <- projectRaster(r_data, r_1024, method="ngb")
# Get the re-sampling value for filling process
temp <- matrix(getValues(r_project),1024,1024,byrow=TRUE)
# Check the boundary with 1024 mask:
# If [mask1024 = land or re-sample1024 = land] <- NA, the later criteria is for preventing "-1" influence filling process
temp[mask_1024==0 | temp==-1] <- NA
# Finding the pixels which are mask1024=water, but resample1024 = land -> which have to be filled in values
NA_lo <- which(mask_1024!=0 & is.na(temp), arr.ind = TRUE)
# Using searching window to search most common values around the pixels. It will enlarge the window size until all of the pixels find the value
win_size <- 1
while (nrow(NA_lo)!=0){
val_fil <- matrix(NA, nrow(NA_lo),(win_size*2+1)^2)
for (i in 1:nrow(NA_lo)){
if ((NA_lo[i,2][[1]]+win_size)>1024){ # For the right part of Lake Ontario
up_bd <- 1024
size_ext <- (win_size*2+1) * ((win_size*2+1)-(NA_lo[i,2][[1]]+win_size)+1024)
} else{
up_bd <- (NA_lo[i,2][[1]]+win_size)
size_ext <- (win_size*2+1)^2
}
# For every pixel, find the values within the window
val_fil[i,1:size_ext] <- matrix(temp[(NA_lo[i,1][[1]]-win_size):(NA_lo[i,1][[1]]+win_size), (NA_lo[i,2][[1]]-win_size):up_bd],1,size_ext)
}
# Find the most common value
val_fil_com <- matrix(NA, nrow(val_fil),1)
for (q in 1:nrow(val_fil)){
if (sum(is.na(val_fil[q, ]))==ncol(val_fil)){
next
}
temp99 <- as.data.frame(table(val_fil[q,]))
val_fil_com[q] <- as.numeric(as.character(temp99[which.max(temp99$Freq),1]))
}
temp[mask_1024!=0 & is.na(temp)] <- val_fil_com
NA_lo <- which(mask_1024!=0 & is.na(temp), arr.ind = TRUE)
win_size <- win_size + 1
}
# Assign "-1" to land
temp[is.na(temp)] <- -1
values(r_project) <- matrix(t(temp),1,1024*1024)
# Output the files
cat("#ncols 1024\n#nrows 1024\n#xllcorner -10288021.9553\n#yllcorner 4675974.1583\n#cellsize 1800\n#NODATA_value -99\n",
file=paste("TXT_Raster/", year, '/',file_name,'.ct', sep=""))
write.fwf(temp, file = paste("TXT_Raster/", year, '/',file_name,'.ct', sep=""),
width = c(3), sep = " ", quote=FALSE, colnames = FALSE, rownames=FALSE, append=TRUE)
# Plot
png(paste("Fig_Raster/", year, '/',file_name,'_Ori.jpg',sep=""),width=850,height=850)
plot(r_data, col=tim.colors(), legend=FALSE, axes=FALSE, zlim=c(0,100), xlab="", ylab="")
plot(r_data,zlim=c(0,100), col=tim.colors(),legend.only=TRUE,horizontal=TRUE,
smallplot=c(0.25,0.75,0.17,0.19),
legend.args=list(text='Ice Coverage [%]', side=3, cex=1.4),
axis.args=list(at=seq(0,100,20),cex.axis=1.3,tck=0.4,mgp = c(3, 0.6, 0)))
dev.off()
png(paste("Fig_Raster/", year, '/',file_name,'_RS.jpg',sep=""),width=850,height=850)
plot(r_project, col=tim.colors(), legend=FALSE, axes=FALSE, zlim=c(0,100), xlab="", ylab="")
plot(r_project,zlim=c(0,100), col=tim.colors(),legend.only=TRUE,horizontal=TRUE,
smallplot=c(0.25,0.75,0.17,0.19),
legend.args=list(text='Ice Coverage [%]', side=3, cex=1.4),
axis.args=list(at=seq(0,100,20),cex.axis=1.3,tck=0.4,mgp = c(3, 0.6, 0)))
dev.off()
}
}