-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathACT_filter.m
454 lines (365 loc) · 19 KB
/
ACT_filter.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
function denoised_img = ACT_filter(noisy_img, noise_var, threshold_setting)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ACT_filter (Version 1.00) May 2022 (*)
% Denoising filter based on Adaptive Curvelet Thresholding described in
% the paper [#]:
%
% [#] N. Eslahi and A. Aghagolzadeh, "Compressive Sensing Image Restoration
% Using Adaptive Curvelet Thresholding and Nonlocal sparse Regularization",
% IEEE Trans. Image Process., vol.25, no.7, pp. 3126-3140, Jul. 2016
% https://doi.org/10.1109/TIP.2016.2562563
%
% (*) Unlike the preliminary version of ACT_filter, dubbed Curve_denoising
% and released in August 2015, this version is able to deal with both
% additive stationary white and colored (a.k.a. correlated) noise.
% Furthermore, different thresholding schemes, comprehensive syntaxes,
% and optimized code for faster execution are included here.
%
%
% FUNCTION INTERFACE:
% denoised_img = ACT_filter(noisy_img, noise_var, threshold_setting)
%
% ________________________________________________________________________________
% INPUTS: | CLASS: | DESCRIPTION:
% --------------------------------------------------------------------------------
% noisy_img | (double) | The noisy image.
% --------------------------------------------------------------------------------
% noise_var | (double) | The noise variance if it is modeled as AWGN,
% | | or the noise FFT-PSD (as size as the noisy image).
% | | If noise_var is not given or set empty, the
% | | filter will then assume the noise to be AWGN
% | | and estimate the noise variance internally.
% --------------------------------------------------------------------------------
% threshold_setting | (char) | The selected threshold setting for filtering.
% | OR | <options> : <description>
% | (string) | 's' : soft-shrinkage with adaptive threshold
% | | 'h' : hard-shrinkage with adaptive threshold
% | | 'ksigma': hard-shrinkage with k-sigma threshold
% | | If threshold_setting is not given or set empty,
% | | it will be set to 's'.
%
%
% ________________________________________________________________________________
% OUTPUT: | CLASS: | DESCRIPTION:
% --------------------------------------------------------------------------------
% denoised_img | (double) | The denoised image.
%
%
%
% List of acronyms used in the syntaxes and comments
% <Acronym>: <Backronym>
% ACT : Adaptive Curvelet Thresholding
% DCuT : Discrete Curvelet Transform
% AWGN : Additive White Gaussian Noise
% ML : Maximum Likelihood
% MAD : Median Absolute Deviation
% PSD : Power Spectral Density
% root-PSD : square root of PSD
% var : variance
% std : standard deviation
% coeff: coefficient
%
%
% DEPENDENCY SUBFUNCTIONS:
% <a href="matlab:help ACT_filter>ACT">ACT</a>
% <a href="matlab:help ACT_filter>ML_estimator">ML_estimator</a>
% <a href="matlab:help ACT_filter>cmpt_DCuT_rootPSD">cmpt_DCuT_rootPSD</a>
% 3rd party dependency functions (downloaded from <a href="www.curvelet.org">www.curvelet.org</a>):
% <a href="matlab:help fdct_wrapping">fdct_wrapping</a>
% <a href="matlab:help ifdct_wrapping">ifdct_wrapping</a>
%
%
% AUTHORS:
% Nasser Eslahi ([email protected], [email protected])
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Example 1: ACT for AWGN
%
% x = im2double(imread('cameraman.tif'));
% std_noise = .2;
% normalizer = @(n) (n-mean(n(:)))./std(n(:));
% z = x + std_noise .* normalizer(randn(size(x)));
% psnr_noisy = 10*log10((max(x(:))).^2/mean((x(:)-z(:)).^2))
%
% x_est = ACT_filter(z);
%%%%x_est = ACT_filter(z, std_noise^2);
% psnr_denoised = 10*log10((max(x(:))).^2/mean((x(:)-x_est(:)).^2))
%
% figure, subplot(1,3,1), imagesc(x), colormap('gray'),
% colorbar, title('ground-truth')
% subplot(1,3,2), imagesc(z), colormap('gray'),
% colorbar, title(sprintf('noisy image\nPSNR=%0.2fdB',psnr_noisy))
% subplot(1,3,3), imagesc(x_est), colormap('gray'),
% colorbar, title(sprintf('denoised image\nPSNR=%0.2fdB',psnr_denoised))
%
% --------------------------------------------------------------------------------
% Example 2: ACT for stationary correlated noise
%
% x = im2double(imread('cameraman.tif'));
% kernel = .05*rand(7);
% FFT_PSD = abs(fft2(kernel,size(x,1),size(x,2)).^2)*numel(x);
% normalizer = @(n) (n-mean(n(:)))./std(n(:));
% noise = convn(padarray(normalizer(randn(size(x))),(size(kernel)-1)/2,'both','circular'),kernel,'valid');
% z = x + noise;
% psnr_noisy = 10*log10((max(x(:))).^2/mean((x(:)-z(:)).^2))
%
% x_est = ACT_filter(z, FFT_PSD);
% psnr_denoised = 10*log10((max(x(:))).^2/mean((x(:)-x_est(:)).^2))
%
% figure, subplot(1,5,1), imagesc(x), colormap('gray'),
% colorbar, title('ground-truth')
% subplot(1,5,2), imagesc(noise), colormap('gray'),
% colorbar, title('noise')
% subplot(1,5,3), imagesc(fftshift(FFT_PSD)), colormap('jet'),
% colorbar, title('global FFT-PSD')
% subplot(1,5,4), imagesc(z), colormap('gray'),
% colorbar, title(sprintf('noisy image\nPSNR=%0.2fdB',psnr_noisy))
% subplot(1,5,5), imagesc(x_est), colormap('gray'),
% colorbar, title(sprintf('denoised image\nPSNR=%0.2fdB',psnr_denoised))
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Copyright (c) 2006-2022 Tampere University.
% All rights reserved.
% This work (software, material, and documentation) shall only be used for nonprofit
% noncommercial purposes.
% Any unauthorized use of this work for commercial or for-profit purposes is prohibited.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~exist('noise_var','var')||isempty(noise_var)
est_noise_var = true; % blind AWGN denoising
else
est_noise_var = false; % non-blind denoising
end
if ~exist('threshold_setting','var')||isempty(threshold_setting)
threshold_setting = 's';
end
if ~sum(strcmpi(threshold_setting,{'s','h','ksigma'}))
error(['Your selected threshold setting ''%s'' does not exist in this code!\n' ...
'Please check the <a href="matlab:help %s">syntax</a>'], threshold_setting, mfilename);
end
is_real = 1; % consider only real-valued noisy images
%%% forward curvelet transform
noisy_DCuT_coeffs = fdct_wrapping(noisy_img, is_real);
if est_noise_var
%%% Estimating noise std by applying the MAD over the high-passed ...
%%% noisy image to discard the influence of outliers.
highest_freq_coeff = noisy_DCuT_coeffs{length(noisy_DCuT_coeffs)}{1};
noise_std = median(abs(highest_freq_coeff(:) - median(highest_freq_coeff(:))))/.6745; % MAD
noise_var = noise_std^2;
end
%%% global FFT-PSD of the noise
if numel(noise_var) == 1 %% uncorrelated (a.k.a. white) Gaussian noise %%
FFT_PSD = noise_var.*ones(size(noisy_img)).*numel(noisy_img); % flat FFT-PSD of white noise
noise_type = 'white';
else %% correlated (a.k.a. colored) Gaussian noise %%
FFT_PSD = noise_var; % FFT-PSD of the noise
if sum(size(FFT_PSD) == size(noisy_img)) ~= 2
error('The input noise FFT-PSD ''noise_var'' should be of size %dx%d',...
size(noisy_img,1), size(noisy_img,2))
end
if (max(FFT_PSD(:))-min(FFT_PSD(:)))<.015*numel(FFT_PSD)
noise_type = 'white';
else
noise_type = 'colored';
end
end
%%% computing the noise root-PSD in DCuT domain (or the std of the noise ...
%%% within each subband) given the noise FFT-PSD (or given the noise ...
%%% variance if it is modeled as AWGN).
noise_DCuT_rootPSD = cmpt_DCuT_rootPSD(FFT_PSD);
%%%% Adaptive Curvelet Thresholding
denoised_DCuT_coeffs = ACT(noisy_DCuT_coeffs, noise_DCuT_rootPSD, threshold_setting, noise_type);
%%% inverse curvelet transform
denoised_img = ifdct_wrapping(denoised_DCuT_coeffs, is_real);
return
function denoised_DCuT_coeffs = ACT(noisy_DCuT_coeffs, noise_DCuT_rootPSD, ...
threshold_setting, noise_type)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% *** ACT (Version 2.00) May 2022
% Adaptive Curvelet Thresholding described in the paper [*]:
%
% N. Eslahi and A. Aghagolzadeh, "Compressive Sensing Image Restoration
% Using Adaptive Curvelet Thresholding and Nonlocal sparse Regularization",
% IEEE Trans. Image Process., vol.25, no.7, pp. 3126-3140, Jul. 2016
% https://doi.org/10.1109/TIP.2016.2562563
%
% FUNCTION INTERFACE:
% denoised_DCuT_coeffs = ACT(noisy_DCuT_coeffs, noise_DCuT_rootPSD, ...
% threshold_setting, noise_type)
%
% ________________________________________________________________________________
% INPUTS: | CLASS: | DESCRIPTION:
% --------------------------------------------------------------------------------
% noisy_DCuT_coeffs | (cell) | The discrete curvelet coefficients
% | | of the noisy signal
% --------------------------------------------------------------------------------
% noise_DCuT_rootPSD | (cell) | The noise root-PSD in DCuT domain
% | | (or the std of noise in each subband)
% --------------------------------------------------------------------------------
% threshold_setting | (char) | The selected threshold setting for filtering.
% | OR | <options> : <description>
% | (string) | 's' : ACT via soft-shrinkage
% | | 'h' : ACT via hard-shrinkage
% | | 'ksigma': hard-shrinkage with k-sigma threshold
% --------------------------------------------------------------------------------
% noise_type | (char) | The type of noise correlation
% | OR | 'white' : uncorrelated Gaussian noise
% | (string) | 'colored' : correlated Gaussian noise
%
%
% ________________________________________________________________________________
% OUTPUT: | CLASS: | DESCRIPTION:
% --------------------------------------------------------------------------------
% denoised_DCuT_coeffs | (cell) | the denoised coefficients
%
%
% *** ACT (version 1.00) was released in August 2015. In the new version
% of ACT, different thresholding schemes, correlated noise removal, and
% comprehensive syntax are included.
%
%
% AUTHOR:
% Nasser Eslahi ([email protected], [email protected])
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% computing the noise DCuT-root-PSD (i.e. the std of noise in each DCuT subband) ...
%%% through scaling the norm2 of the DCuT basis/frame by the noise std.
denoised_DCuT_coeffs = noisy_DCuT_coeffs;
for J = 2:length(noisy_DCuT_coeffs)
for L = 1:length(noisy_DCuT_coeffs{J})
if sum(strcmpi(threshold_setting,{'s','h'})) %%ACT (Eslahi & Aghagolzadeh, 2016)%%
%%% estimating the sample std of the clean (noise-free) DCuT coefficients ...
%%% via the maximum likelihood estimator given the noisy DCuT coefficients ...
%%% and the noise root-PSD in DCuT domain (see Eq.(12) of [*]).
clean_subband_std = ML_estimator(noisy_DCuT_coeffs{J}{L}, ...
noise_DCuT_rootPSD{J}(L),...
noise_type);
%%% computing the adaptive threshold for the selected subband and
%%% then using it within the selected filter
Threshold = sqrt(2)*((noise_DCuT_rootPSD{J}(L).^2)./clean_subband_std);
if strcmpi(threshold_setting,'s') %% soft-shrinkage %%
denoised_DCuT_coeffs{J}{L} = sign(noisy_DCuT_coeffs{J}{L}) .* ...
max(abs(noisy_DCuT_coeffs{J}{L}) - Threshold, 0);
elseif strcmpi(threshold_setting,'h') %% hard-shrinkage %%
% Threshold = max(sqrt(2*log(numel(Threshold))),1)*Threshold./sqrt(2);
Threshold = (3 + double(J == length(noisy_DCuT_coeffs))) * ...
Threshold./sqrt(2);
denoised_DCuT_coeffs{J}{L} = noisy_DCuT_coeffs{J}{L} .* ...
(abs(noisy_DCuT_coeffs{J}{L}) > Threshold);
end
else %% k-sigma thresholding (Starck, Candes, Donoho, 2002) %%
Threshold = (3 + double(J == length(noisy_DCuT_coeffs))) * ...
noise_DCuT_rootPSD{J}(L);
denoised_DCuT_coeffs{J}{L} = noisy_DCuT_coeffs{J}{L} .* ...
(abs(noisy_DCuT_coeffs{J}{L}) > Threshold);
end
end
end
return;
function Est_sample_std_clean_DCuT_coeff = ML_estimator(noisy_DCuT_coeffs,...
noise_root_PSD, noise_type)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ML_estimator estimates the sample std of the clean (noise-free) coefficients in the DCuT
% domain at a specific subband (scale and rotation angle) via the ML estimator given
% the noisy DCuT coefficients and the noise std.
%
%
% FUNCTION INTERFACE:
% Est_sample_std_clean_DCuT_coeff = ML_estimator(noisy_DCuT_coeffs,...
% noise_root_PSD, noise_type)
%
% ________________________________________________________________________________
% INPUTS: | CLASS: | DESCRIPTION:
% --------------------------------------------------------------------------------
% noisy_DCuT_coeffs | (double) | Noisy DCuT coefficients at a specific subband
% --------------------------------------------------------------------------------
% noise_root_PSD | (double) | Noise DCuT-root-PSD at a specific subband
% --------------------------------------------------------------------------------
% noise_type | (char) | The type of noise correlation
% | OR | 'white' : uncorrelated Gaussian noise
% | (string) | 'colored' : correlated Gaussian noise
%
%
% ________________________________________________________________________________
% OUTPUT: | CLASS: | DESCRIPTION:
% --------------------------------------------------------------------------------
% Est_sample_std_clean_DCuT_coeff | (double) | Estimated sample std of clean DCuT
% | | coefficients at the selected subband
%
%
% AUTHOR:
% Nasser Eslahi (nasser.eslahi@{gmail.com, tuni.fi})
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% convolutional kernel for ML averaging (local averaging window)
if strcmpi(noise_type,'white')
kernel = ones(7)/48; kernel(4,4) = 0;
else
kernel = ones(31)/960; kernel(16,16) = 0;
end
%%% estimating sample variance of noisy coefficients as the average of ...
%%% squared coefficients over a local moving window
Est_sample_var_noisy_coeff = convn(...
padarray(noisy_DCuT_coeffs.^2, (size(kernel)-1)/2, 'both','circular'),...
kernel, 'valid');
%%% estimating the sample variance of clean coefficients by subtracting ...
%%% the noise std from the estimated sample variance of noisy coefficients
Est_sample_var_clean_coeff = Est_sample_var_noisy_coeff - noise_root_PSD.^2;
%%% imposing non-negativity (because it is PSD/variance!)
Est_sample_var_clean_coeff( Est_sample_var_clean_coeff <0 ) = 0;
%%% taking the square-root for sample std
Est_sample_std_clean_DCuT_coeff = sqrt(Est_sample_var_clean_coeff);
return;
function noise_DCuT_rootPSD = cmpt_DCuT_rootPSD(FFT_PSD)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% cmpt_DCuT_rootPSD computes the noise root-PSD in DCuT domain (or the std of noise within
% each subband) given the noise FFT-PSD (or given the noise variance if it is modeled as AWGN)
%
%
% FUNCTION INTERFACE:
% noise_DCuT_rootPSD = cmpt_DCuT_rootPSD(FFT_PSD)
%
% ________________________________________________________________________________
% INPUTS: | CLASS: | DESCRIPTION:
% --------------------------------------------------------------------------------
% FFT_PSD | (double) | The noise FFT-PSD (as size as the noisy image).
% | |
%
%
% ________________________________________________________________________________
% OUTPUTS: | CLASS: | DESCRIPTION:
% --------------------------------------------------------------------------------
% noise_DCuT_rootPSD | (cell) | The noise root-PSD in DCuT domain (or the std
% | | of the noise within each subband)
%
%
% AUTHOR:
% Nasser Eslahi (nasser.eslahi@{gmail.com, tuni.fi})
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
is_real = 1;
%%% computing the root-PSD in DCuT domain
kernel_noise = fftshift(ifft2(sqrt(FFT_PSD))); % convolutional kernel of the noise
DCuT_frames = fdct_wrapping(kernel_noise,is_real); % DCuT frames (for all subbands)
func = @(x) sqrt(mean(x(:).^2)); % mean squared function
noise_DCuT_rootPSD = cellfun(@(c)cellfun(func, c, 'uni', false), DCuT_frames, 'uni', false);
noise_DCuT_rootPSD = cellfun(@cell2mat, noise_DCuT_rootPSD, 'uni', false);
return
%%%%% References %%%%%
% E. Candes, L. Demanet, D. Donoho, and X. Ying, "Fast discrete curvelet
% transforms," Multiscale Model. Simul., vol. 5, no. 3, pp. 861-899, Sep. 2006.
% D. L. Donoho and J. M. Johnstone, "Ideal spatial adaptation by wavelet
% shrinkage," Biometrika, vol. 81, no. 3, pp. 425-455, 1994.
% M. K. Mihcak, I. Kozintsev, K. Ramchandran, and P. Moulin, "Low-complexity
% image denoising based on statistical modeling of wavelet coefficients,"
% IEEE Signal Process. Lett., vol. 6, no. 12, pp. 300-303, Dec. 1999.
% D. L. Donoho, "De-noising by soft-thresholding," IEEE Trans. Inf. Theory,
% vol. 41, no. 3, pp. 613-627, May 1995.
% F. R. Hampel, "The influence curve and its role in robust estimation,"
% J. Am. Stat. Assoc., vol. 69, no. 346, pp. 383–393, 1974.
% J. L. Starck, E. J. Candes and D. L. Donoho, "The curvelet transform for
% image denoising," IEEE Trans. Image Process., vol.11, no.6, pp. 670-684,
% Jun. 2002.
% N. Eslahi and A. Aghagolzadeh, "Compressive sensing image restoration
% using adaptive curvelet thresholding and nonlocal sparse regularization",
% IEEE Trans. Image Process., vol.25, no.7, pp. 3126-3140, Jul. 2016