-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpreprocess.py
216 lines (181 loc) · 5.86 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
'''
This code preprocesses SIM.csv into a json "database" frontend/db.json. The json looks like this:
[
{
"tumor":"Colon",
"cell":"CD4",
"location":"TUMOR",
"cell_full":"CD4_TUMOR",
"expression":89.02,
"coef":0.6703,
"lower":0.4474,
"upper":1.004,
"p":0.05242
},
{
"tumor":"Colon",
"cell":"CD4_Treg",
"location":"TUMOR",
"cell_full":"CD4_Treg_TUMOR",
"expression":3.248,
"coef":0.8724,
"lower":0.5743,
"upper":1.325,
"p":0.5222
},
{
"tumor":"Colon",
"cell":"CD8",
"location":"TUMOR",
"cell_full":"CD8_TUMOR",
"expression":132.5,
"coef":0.777,
...
},
...
]
It uses code from python port of forestplots.R, see forestplots.py and forestplots.ipynb.
Additionally it creates frotend/codes.json which is a mapping from tumor type acronyms
to their expanded versions:
{
"COAD": "Colon adenocarcinoma",
"READ": "Rectum adenocarcinoma",
...
}
'''
# !pip install --user lifelines
from lifelines import CoxPHFitter
import pandas as pd
import json
# https://rdrr.io/cran/schoRsch/src/R/ntiles.R
ntiles = lambda xs: pd.cut(pd.Series(xs).rank(), 2, right=False, labels=False) + 1
def uniq(xs):
seen = set()
return [
(seen.add(x), x)[-1]
for x in xs
if x not in seen
]
data = pd.read_csv("./SIM.csv")
# Whitespace stripping because of some trailing Morphological_type spaces
strip = lambda x: x.strip() if isinstance(x, str) else x
data = data.applymap(strip)
data['T'] = data['Time_Diagnosis_Last_followup']
data['E'] = data['Event_last_followup'] == 'Dead'
tumor_types = uniq(data.Tumor_type_code)
cell_types = uniq(c for c in data.columns if 'TUMOR' in c or 'STROMA' in c)
def coxph_per_type(dd):
dd = dd.copy()
for i in cell_types:
dd[i] = ntiles(dd[i])
univariate_results = []
for c in cell_types:
dd_c = dd[[c, 'T', 'E']]
dd_c = dd_c[~pd.isnull(dd_c).any(axis=1)]
cph = CoxPHFitter()
cph.fit(dd_c, 'T', event_col='E') # fits are ~15-60 ms each
univariate_results.append(cph.summary)
cox = pd.concat(univariate_results)
rename = {
'exp(coef)': 'coef',
'exp(coef) lower 95%': 'lower',
'exp(coef) upper 95%': 'upper',
'p': 'p',
}
cox = cox[rename.keys()]
cox = cox.rename(columns=rename)
return cox
def data_per_type(dd):
expression = pd.DataFrame({'expression': dd[cell_types].mean()})
cox = coxph_per_type(dd)
return pd.concat((expression, cox), axis=1)
# This takes about 15s
dfs = []
for t in tumor_types:
df = data_per_type(data[
(data.Tumor_type_code == t) &
(data['PreOp_treatment_yesno'] == 'No')
])
# df = df.astype('float16')
df = df.applymap(lambda x: float(f'{x:.3e}'))
cell_full = df.index
df.reset_index(drop=True, inplace=True)
df.insert(0, 'tumor', t)
df.insert(1, 'cell', cell_full.map(lambda x: '_'.join(x.split('_')[:-1])))
df.insert(2, 'location', cell_full.map(lambda x: x.split('_')[-1]))
df.insert(3, 'cell_full', cell_full)
dfs.append(df)
db = pd.concat(dfs, axis=0).reset_index(drop=True)
db_str = db.to_json(orient='records', indent=2)
def write_json(filename, obj):
if not isinstance(obj, str):
obj = json.dumps(obj, indent=2)
with open(filename, 'w') as fp:
fp.write(obj)
import gzip
print(filename + ':')
print('\n'.join(obj.split('\n')[:15]) + '...')
print()
print('json len:', len(obj))
print('gzipped:', len(gzip.compress(obj.encode())))
write_json('./frontend/db.json', db_str)
codes_list = data[['Tumor_type', 'Tumor_type_code']].to_dict(orient='records')
codes_dict = {d['Tumor_type_code']: d['Tumor_type'] for d in codes_list}
write_json('./frontend/codes.json', codes_dict)
def form_configuration():
'''
This is a work in progress of getting the configuration for the form.
'''
def tidy_values(values):
values = uniq(values)
values = sorted(values, key=lambda x: (isinstance(x, float), x))
values = [ 'missing' if pd.isnull(v) else v for v in values ]
return values
tumor_specific_columns = [
'Anatomical_location',
'Morphological_type',
'MSI_ARTUR',
]
tumor_specific_values = []
for column in tumor_specific_columns:
# values = uniq(data[c][lambda x: ~pd.isnull(x)])
# print(c, values)
for tumor in tumor_types:
values = tidy_values(data[data.Tumor_type_code == tumor][column])
if len(values) > 1:
tumor_specific_values.append({
'column': column,
'tumor': tumor,
'values': values
})
variant_columns = [
'Tumor_type_code',
# 'Gender',
# 'Anatomical_location',
# 'Morphological_type',
'clinical_stage',
'pT_stage',
'pN_stage',
'pM_stage',
'Diff_grade',
'Neuralinv',
'Vascinv',
'PreOp_treatment_yesno',
'PostOp_type_treatment',
# 'MSI_ARTUR',
]
variant_values = []
for column in variant_columns:
values = tidy_values(data[column])
variant_values.append({
'column': column,
'values': values
})
config = {
'variant_values': variant_values,
'tumor_specific_values': tumor_specific_values,
'cell_types_full': cell_types,
'cell_types': tidy_values('_'.join(c.split('_')[:-1]) for c in cell_types)
}
write_json('./frontend/form_configuration.json', config)
form_configuration()