-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
418 lines (375 loc) · 17.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#!/usr/bin/env python3
import yaml
from termcolor import cprint
from datetime import datetime
import time
import torch
import numpy as np
np.finfo(np.dtype("float32"))
np.finfo(np.dtype("float64"))
import random
import pickle
import argparse
# local imports
from utils import get_duration, save_config
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='SwimmerEnv_v3', help="PointMass2D_DoubleIntEnv,SwimmerEnv_v3, AntEnv_v3, etc.")
parser.add_argument('--method', type=str, default='maxdiff', help='maxdiff, mppi, or sac_orig')
parser.add_argument('--seed', type=int, default=666, help='any positive integer')
parser.add_argument('--log', dest='log', action='store_true',help='save data for experiment')
parser.add_argument('--no_log', dest='log', action='store_false',help='run test without saving')
parser.set_defaults(log=True)
parser.add_argument('--render', dest='render', action='store_true',help='show visualization while running')
parser.add_argument('--no_render', dest='render', action='store_false',help='run offline / without showing plots')
parser.set_defaults(render=False)
parser.add_argument('--cpu', dest='cpu', action='store_true',help='only use CPU')
parser.add_argument('--no_cpu', dest='cpu', action='store_false',help='try to use GPU if available')
parser.set_defaults(cpu=False)
parser.add_argument('--mod_weight', type=str, default='None',help="[gym envs only] load alternate xml file for enviroment (e.g. 'light' or 'orig' for swimmer)")
parser.add_argument('--frames_before_learning', type=int, default=0,help="if specified, number of frames to collect before starting to learn (otherwise, batch size is used)")
parser.add_argument('--random_actions', type=int, default=0,help="if specified, number random frames to collect before starting to use the policy")
parser.add_argument('--base_dir', type=str, default='./results/',help="where to save the data (if log=True)")
parser.add_argument('--singleshot', dest='singleshot', action='store_true',help="don't reset for each epoch and run all steps from initial condition")
parser.set_defaults(singleshot=False)
parser.add_argument('--start_mode', type=str, default='one_corner',help="[PointMass envs only] one_corner, four_corners, circle10, random")
parser.add_argument('--beta', type=float, default=0.01, help='[PointMass envs only] weights pointmass A matrix (e.g. 1.0, 0.1, 0.01, 0.001) ')
args = parser.parse_args()
cprint(args,'cyan')
args.v3 = 'v3' in args.env
args.pointmass = 'PointMass' in args.env
args.done_util = True
# added to save when exiting
from signal import signal, SIGINT
from sys import exit
def end_test():
env.close()
if args.log:
print('saving final data set')
pickle.dump(rewards, open(path + 'reward_data'+ '.pkl', 'wb'))
pickle.dump(eval_rewards, open(path + 'eval_reward_data' + '.pkl', 'wb'))
if base_method == 'sac':
torch.save(policy_net.state_dict(), path + 'policy_' + 'final' + '.pt')
else:
torch.save(model.state_dict(), path + 'model_' + 'final' + '.pt')
pickle.dump(model_optim.log, open(path + 'optim_data'+ '.pkl', 'wb'))
# save duration
end = datetime.now()
date_str = end.strftime("%Y-%m-%d_%H-%M-%S/")
duration_str = get_duration(start_time)
# save config
with open(path + "/../config.txt","a") as f:
f.write('End Time\n')
f.write('\t'+ date_str + '\n')
f.write('Duration\n')
f.write('\t'+ duration_str + '\n')
f.close()
# save final steps
if args.pointmass:
fig_saved = False
try:
if args.render:
if args.singleshot:
viewer.save(path + "/final_fig_viewer.svg")
fig_saved = True
viewer.close()
except:
pass
if not fig_saved:
try:
traj.save_fig(path + "/final_fig.svg")
except:
traj.save_buff(path + "/final_fig.pkl")
else:
buff = replay_buffer.get_final_samples(10000)
pickle.dump(buff, open(path + 'buffer_data'+ '.pkl', 'wb'))
def handler(signal_received, frame):
# Handle any cleanup here
print('SIGINT or CTRL-C detected.')
end_test()
print('Exiting gracefully')
exit(0)
# eval function
def eval():
state = env.reset()
if not(base_method == 'sac' ):
planner.reset()
episode_reward = 0.
states = []
for step in range(max_steps):
if base_method == 'sac' :
action = policy_net.get_action(state,eval=True)
else:
action = planner(state,eval=True)
state, reward, done, _ = env.step(action.copy())
episode_reward += reward
if args.pointmass:
states.append(state)
elif args.render:
env.render(mode="human")
if args.done_util:
if done:
break
step += 1
cprint('eval: {} {}'.format(episode_reward, step),'cyan')
return states, episode_reward, step
if __name__ == '__main__':
# Tell Python to run the handler() function when SIGINT is recieved
signal(SIGINT, handler)
# load config
base_method = args.method[:3]
if args.singleshot:
mod = '_singleshot'
else:
mod=''
if base_method == 'sac':
config_path = f'./config/sac{mod}.yaml'
elif base_method == 'mpp':
config_path = f'./config/mppi{mod}.yaml'
elif base_method == 'max':
config_path = f'./config/maxdiff{mod}.yaml'
else:
raise ValueError('config file not found for env')
with open(config_path, 'r') as f:
config_dict = yaml.safe_load(f)
config = config_dict['default']
if args.env in list(config_dict.keys()):
config.update(config_dict[args.env])
else:
raise ValueError('env not found config file')
if args.singleshot:
args.done_util = False
ss_count = 0
# set seeds
np.random.seed(args.seed)
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.set_flush_denormal(True)
# set torch config
device ='cpu'
if not args.cpu:
if torch.cuda.is_available():
torch.set_num_threads(1)
device = 'cuda:0'
print('Using GPU Accel')
else:
args.cpu = True
# initialize environment
from envs import build_env
env, env_name, action_dim, state_dim, traj, viewer = build_env(args,config,device)
cprint(env,'green')
print('actions states',action_dim,state_dim)
# load models / policies / controllers
from envs import ReplayBuffer
if args.pointmass:
eval_freq = 10
replay_buffer_size = int(3e5)
else:
eval_freq = 5
replay_buffer_size = int(1e6)
replay_buffer = ReplayBuffer(replay_buffer_size,state_dim,action_dim)
replay_buffer.seed(args.seed)
if base_method == 'sac':
from sac_lib import PolicyNetwork, SoftActorCritic
policy_net = PolicyNetwork(state_dim, action_dim, config['hidden_dim'],device=device).to(device)
sac = SoftActorCritic(policy=policy_net,
state_dim=state_dim,
action_dim=action_dim,
replay_buffer=replay_buffer,
hidden_dim=config['hidden_dim_sac'],
policy_lr=config['policy_lr'],
value_lr=config['value_lr'],
soft_q_lr=config['soft_q_lr'],
device=device)
else:
from mpc_lib import Model, ModelOptimizer
model_kwargs = {'model_layers':config['model_layers'],'model_AF':config['model_activation_fun'],
'reward_layers':config['reward_layers'],'reward_AF':config['reward_activation_fun']}
model = Model(state_dim, action_dim,**model_kwargs).to(device)
#### jit model for planner (samples)
with torch.no_grad():
inputs = (torch.rand(config['planner']['samples'],state_dim,device=device),torch.rand( config['planner']['samples'],action_dim,device=device))
jit_model_plan = torch.jit.trace(model,inputs) # set up traced model
primed = jit_model_plan(*inputs) # prime model
#### jit model for optimizer (batch size)
inputs = (torch.rand(config['batch_size'],state_dim,device=device),torch.rand( config['batch_size'],action_dim,device=device))
jit_model_opt = torch.jit.trace(model,inputs) # set up traced model
primed = jit_model_opt(*inputs) # prime model
model_optim = ModelOptimizer(jit_model_opt, replay_buffer, lr=config['model_lr'],device=device)
if base_method == 'mpp':
from mpc_lib import PathIntegral
planner = PathIntegral(jit_model_plan,device=device,**config['planner'])
elif base_method == 'max':
from mpc_lib import MaxDiff
planner = MaxDiff(jit_model_plan,device=device,**config['planner'])
update_H = False
if 'H_sequence' in config.keys():
update_H = True
H_seq_idx = 0
ready_to_update_H = False
def update_H_fn(H_seq_idx):
cprint('updating horizon to {}'.format(config['H_sequence']['horizon'][H_seq_idx]),'magenta')
planner.update_horizon(config['H_sequence']['horizon'][H_seq_idx])
H_seq_idx += 1
update_H = False if H_seq_idx >= len(config['H_sequence']['steps']) else True
return update_H, H_seq_idx
update_alpha = False
if 'alpha_sequence' in config.keys():
update_alpha = True
alpha_seq_idx = 0
ready_to_update_alpha = False
def update_alpha_fn(alpha_seq_idx):
new_alpha = config['alpha_sequence']['alpha'][alpha_seq_idx]
cprint('updating alpha to {}'.format(new_alpha),'magenta')
logdet_method = 'abs' if alpha_seq_idx == 0 else None
planner.update_alpha(new_alpha,logdet_method=logdet_method)
alpha_seq_idx += 1
update_alpha = False if alpha_seq_idx >= len(config['alpha_sequence']['steps']) else True
return update_alpha, alpha_seq_idx
update_reward = False
if 'reward_sequence' in config.keys():
update_reward = True
reward_seq_idx = 0
ready_to_update_reward = False
def update_reward_fn(reward_seq_idx):
reward_scale = config['reward_sequence']['reward'][reward_seq_idx]
cprint('updating reward scale to {}'.format(reward_scale),'magenta')
reward_seq_idx += 1
update_reward = False if reward_seq_idx >= len(config['reward_sequence']['steps']) else True
return update_reward, reward_seq_idx
# set up logs
start_time = time.time()
if args.log:
path = save_config(args,config,env_name)
# main simulation loop
max_frames = config['max_frames']
max_steps = config['max_steps'] if not args.singleshot else max_frames
reward_scale = config['reward_scale']
batch_size = config['batch_size']
frame_idx = 0
rewards = []
eval_rewards = []
# pretrain params
frames_before_learning = max(batch_size,args.frames_before_learning)
RANDOM_FRAMES = args.random_actions
if args.random_actions > 0:
def get_random_action():
return np.random.random(action_dim) * 2 - 1
ep_num = 0
while (frame_idx < max_frames):
ep_start_time = time.time()
state = env.reset()
if frame_idx < RANDOM_FRAMES:
action = get_random_action()
if frame_idx == RANDOM_FRAMES-1:
cprint('finished collecting random actions','green')
else:
if base_method == 'sac' :
action = policy_net.get_action(state.copy())
else:
planner.reset()
action = planner(state.copy())
episode_reward = 0
done = False
states = []
for step in range(max_steps):
next_state, reward, done, _ = env.step(action.copy())
# get next action
if frame_idx < RANDOM_FRAMES:
next_action = get_random_action()
else:
if base_method == 'sac':
next_action = policy_net.get_action(next_state.copy())
else:
next_action = planner(next_state.copy())
# error handling
if np.isnan(next_action).any():
cprint('nan in action, resetting simulation','magenta')
break
# add to buffer
replay_buffer.push(state, action, reward_scale * reward, next_state, next_action, done)
# train
if len(replay_buffer) > frames_before_learning:
if base_method == 'sac':
if 'PointMass' in args.env:
sac.update(batch_size,soft_tau=0.01,debug=(frame_idx%250==0))
else:
sac.update(batch_size,debug=(frame_idx%250==0))
else:
model_optim.update_model(batch_size, mini_iter=config['model_iter'],
debug=(frame_idx%250==0),calc_eig=False)
state = next_state
action = next_action
episode_reward += reward
frame_idx += 1
if args.pointmass:
states.append(state)
elif args.render:
env.render(mode="human")
if update_H and (frame_idx % config['H_sequence']['steps'][H_seq_idx] == 0):
if args.pointmass:
traj.args.horizon = config['H_sequence']['horizon'][H_seq_idx]
if args.render:
viewer.horizon = config['H_sequence']['horizon'][H_seq_idx]
viewer.update_title()
update_H, H_seq_idx = update_H_fn(H_seq_idx)
if update_alpha and (frame_idx % config['alpha_sequence']['steps'][alpha_seq_idx] == 0):
if args.pointmass:
traj.args.alpha = config['alpha_sequence']['alpha'][alpha_seq_idx]
if args.render:
viewer.alpha = config['alpha_sequence']['alpha'][alpha_seq_idx]
viewer.update_title()
update_alpha, alpha_seq_idx = update_alpha_fn(alpha_seq_idx)
if update_reward and (frame_idx % config['reward_sequence']['steps'][reward_seq_idx] == 0):
update_reward, reward_seq_idx = update_reward_fn(reward_seq_idx)
if frame_idx % (max_frames//10) == 0:
get_duration(start_time)
if args.log:
print('saving model and reward log')
pickle.dump(rewards, open(path + 'reward_data' + '.pkl', 'wb'))
pickle.dump(eval_rewards, open(path + 'eval_reward_data' + '.pkl', 'wb'))
if base_method == 'sac':
torch.save(policy_net.state_dict(), path + 'policy_' + str(frame_idx) + '.pt')
else:
torch.save(model.state_dict(), path + 'model_' + str(frame_idx) + '.pt')
if args.done_util:
if done:
break
if args.singleshot:
if frame_idx % config['max_steps'] == 0:
ep_time = time.time()-ep_start_time
ep_start_time = time.time()
print('frame : {}/{}, \t {:.2f} seconds'.format(frame_idx, max_frames, ep_time))
print('ep rew', ep_num, episode_reward, frame_idx)
rewards.append([frame_idx, episode_reward,ep_num])
episode_reward = 0
if args.pointmass:
if args.render:
viewer.render(states,f'ss{ss_count}',ncol=int(np.floor(ss_count/15))+1)
ss_count += 1
traj.push(states,ep_num)
states = []
if not args.singleshot:
if args.pointmass:
if args.render:
viewer.render(states,ep_num)
traj.push(states,ep_num)
step += 1
ep_time = time.time()-ep_start_time
print('frame : {}/{}, \t {:.2f} seconds'.format(frame_idx, max_frames, ep_time))
print('ep rew', ep_num, episode_reward, frame_idx, step)
rewards.append([frame_idx, episode_reward,ep_num])
ep_num += 1
if (ep_num % eval_freq == 0) and (frame_idx > frames_before_learning):
eval_states, eval_rew, eval_steps = eval()
eval_rewards.append([frame_idx, eval_rew, ep_num, eval_steps])
if args.pointmass:
plot_name = 'eval'
if args.render:
viewer.render(eval_states,plot_name)
traj.push(eval_states,plot_name)
with open(path + "/rewards.txt","a") as f:
f.write('{}\t{}\t{}\t{}\n'.format(ep_num,episode_reward,step,ep_time))
end_test()