forked from IntelRealSense/librealsense
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet_viewer.py
73 lines (56 loc) · 2.29 KB
/
net_viewer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
## License: Apache 2.0. See LICENSE file in root directory.
## Copyright(c) 2021 Intel Corporation. All Rights Reserved.
###############################################
## Network viewer ##
###############################################
import sys
import numpy as np
import cv2
import pyrealsense2 as rs
import pyrealsense2_net as rsnet
if len(sys.argv) == 1:
print( 'syntax: python net_viewer <server-ip-address>' )
sys.exit(1)
ip = sys.argv[1]
ctx = rs.context()
print ('Connecting to ' + ip)
dev = rsnet.net_device(ip)
print ('Connected')
print ('Using device 0,', dev.get_info(rs.camera_info.name), ' Serial number: ', dev.get_info(rs.camera_info.serial_number))
dev.add_to(ctx)
pipeline = rs.pipeline(ctx)
# Start streaming
print ('Start streaming, press ESC to quit...')
pipeline.start()
try:
while True:
# Wait for a coherent pair of frames: depth and color
frames = pipeline.wait_for_frames()
depth_frame = frames.get_depth_frame()
color_frame = frames.get_color_frame()
if not depth_frame or not color_frame:
continue
# Convert images to numpy arrays
depth_image = np.asanyarray(depth_frame.get_data())
color_image = np.asanyarray(color_frame.get_data())
# Apply colormap on depth image (image must be converted to 8-bit per pixel first)
depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET)
depth_colormap_dim = depth_colormap.shape
color_colormap_dim = color_image.shape
# If depth and color resolutions are different, resize color image to match depth image for display
if depth_colormap_dim != color_colormap_dim:
resized_color_image = cv2.resize(color_image, dsize=(depth_colormap_dim[1], depth_colormap_dim[0]), interpolation=cv2.INTER_AREA)
images = np.hstack((resized_color_image, depth_colormap))
else:
images = np.hstack((color_image, depth_colormap))
# Show images
cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)
cv2.imshow('RealSense', images)
k = cv2.waitKey(1) & 0xFF
if k == 27: # Escape
cv2.destroyAllWindows()
break
finally:
# Stop streaming
pipeline.stop()
print ("Finished")