-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathnodes.py
331 lines (278 loc) · 11.6 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import os
import inspect
from collections import OrderedDict
from omegaconf import OmegaConf
from comfy import latent_formats
import folder_paths as comfy_paths
import torch
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
LCMScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from .src.models.pose_guider import PoseGuider
from .src.models.unet_2d_condition import UNet2DConditionModel
from .src.models.unet_3d import UNet3DConditionModel
from .src.models.main_diffuser import AADiffusion
ROOT_PATH = os.path.join(comfy_paths.get_folder_paths("custom_nodes")[0], "./ComfyUI-AnimateAnyone-Evolved")
DEFAULT_CONFIG_PATH = os.path.join(ROOT_PATH, "./configs/default.yaml")
CONFIG = OmegaConf.load(DEFAULT_CONFIG_PATH)
DEVICE = 'cuda'
WEIGHT_DETYPE = torch.float16
SCHEDULER_DICT = OrderedDict([
("DDIM", DDIMScheduler),
("DPM++ 2M Karras", DPMSolverMultistepScheduler),
("LCM", LCMScheduler),
("Euler", EulerDiscreteScheduler),
("Euler Ancestral", EulerAncestralDiscreteScheduler),
("LMS", LMSDiscreteScheduler),
("PNDM", PNDMScheduler),
])
class Animate_Anyone_Sampler:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"reference_unet": ("UNET2D",),
"denoising_unet": ("UNET3D",),
"ref_image_latent": ("LATENT",),
"clip_image_embeds": ("CLIP_VISION_OUTPUT",),
"pose_latent": ("POSE_LATENT",),
"seed": ("INT", {"default": 999999999, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 3.5, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
"delta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
"context_frames": ("INT", {"default": 24, "min": 1}),
"context_stride": ("INT", {"default": 1, "min": 1}),
"context_overlap": ("INT", {"default": 4, "min": 0}),
"context_batch_size": ("INT", {"default": 1, "min": 1}),
"interpolation_factor": ("INT", {"default": 1, "min": 0}),
"sampler_scheduler_pairs": (list(SCHEDULER_DICT.keys()),),
"beta_start": ("FLOAT", {"default": 0.00085, "min": 0.0, "step":0.00001}),
"beta_end": ("FLOAT", {"default": 0.012, "min": 0.0, "step":0.00001}),
"beta_schedule": (["linear", "scaled_linear", "squaredcos_cap_v2"],),
"prediction_type": (["v_prediction", "epsilon", "sample"],),
"timestep_spacing": (["trailing", "linspace", "leading"],),
"steps_offset": ("INT", {"default": 1, "min": 0, "max": 10000}),
},
"optional": {
"clip_sample": ("BOOLEAN", {"default": False},),
"rescale_betas_zero_snr": ("BOOLEAN", {"default": True},),
"use_lora": ("BOOLEAN", {"default": False},),
"lora_name": (comfy_paths.get_filename_list("loras"),),
}
}
RETURN_TYPES = (
"LATENT",
)
RETURN_NAMES = (
"latent",
)
FUNCTION = "animate_anyone"
CATEGORY = "AnimateAnyone-Evolved"
def animate_anyone(
self,
reference_unet,
denoising_unet,
ref_image_latent,
clip_image_embeds,
pose_latent,
seed,
steps,
cfg,
delta,
context_frames,
context_stride,
context_overlap,
context_batch_size,
interpolation_factor,
sampler_scheduler_pairs,
beta_start,
beta_end,
beta_schedule,
prediction_type,
timestep_spacing,
steps_offset,
clip_sample=False,
rescale_betas_zero_snr=True,
use_lora=False,
lora_name=None
):
latent_format = latent_formats.SD15()
# encoder_hidden_states.shape: torch.Size([1, 1, 768]) clip_image_embeds.shape: torch.Size([1, 768])
encoder_hidden_states = clip_image_embeds["image_embeds"].unsqueeze(1).to(DEVICE, dtype=WEIGHT_DETYPE)
# forward reference image latent with shape (1, 4, 96, 64) to reference net
ref_image_latent = latent_format.process_in(ref_image_latent["samples"]).to(DEVICE, dtype=WEIGHT_DETYPE)
# setup scheduler from user inputs
scheduler_class = SCHEDULER_DICT[sampler_scheduler_pairs]
sched_kwargs = {
"beta_start": beta_start,
"beta_end": beta_end,
"beta_schedule": beta_schedule,
"steps_offset": steps_offset,
"prediction_type": prediction_type,
"timestep_spacing": timestep_spacing,
}
if "clip_sample" in inspect.signature(scheduler_class.__init__).parameters:
sched_kwargs["clip_sample"] = clip_sample
if "rescale_betas_zero_snr" in inspect.signature(scheduler_class.__init__).parameters:
sched_kwargs["rescale_betas_zero_snr"] = rescale_betas_zero_snr
scheduler = scheduler_class(**sched_kwargs)
# setup diffuser and then denoise
diffuser = AADiffusion(reference_unet, denoising_unet, scheduler)
if use_lora:
lora_path = comfy_paths.get_full_path("loras", lora_name)
diffuser.load_lora(lora_path)
samples = diffuser(
steps,
cfg,
delta,
ref_image_latent,
pose_latent,
encoder_hidden_states,
seed,
context_frames=context_frames,
context_stride=context_stride,
context_overlap=context_overlap,
context_batch_size=context_batch_size,
interpolation_factor=interpolation_factor,
)
samples = latent_format.process_out(samples)
# (1, 4, f, h, w) -> (f, 4, h, w)
samples = torch.squeeze(samples, 0).permute(1, 0, 2, 3)
return ({"samples":samples}, )
class Load_UNet2D_ConditionModel:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"pretrained_base_unet_folder_path": ("STRING", {"default": "./pretrained_weights/stable-diffusion-v1-5/unet/", "multiline": False}),
"unet2d_model_path": ("STRING", {"default": "./pretrained_weights/reference_unet.pth", "multiline": False}),
},
}
RETURN_TYPES = (
"UNET2D",
)
RETURN_NAMES = (
"unet2d",
)
FUNCTION = "load_unet2d"
CATEGORY = "AnimateAnyone-Evolved/loaders"
def load_unet2d(self, pretrained_base_unet_folder_path, unet2d_model_path):
if not os.path.isabs(pretrained_base_unet_folder_path):
pretrained_base_unet_folder_path = os.path.join(ROOT_PATH, pretrained_base_unet_folder_path)
if not os.path.isabs(unet2d_model_path):
unet2d_model_path = os.path.join(ROOT_PATH, unet2d_model_path)
unet2d = UNet2DConditionModel.from_pretrained(
pretrained_base_unet_folder_path,
).to(dtype=WEIGHT_DETYPE, device=DEVICE)
unet2d.load_state_dict(
torch.load(unet2d_model_path, map_location="cpu"),
)
return (unet2d,)
class Load_UNet3D_ConditionModel:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"pretrained_base_unet_folder_path": ("STRING", {"default": "./pretrained_weights/stable-diffusion-v1-5/unet/", "multiline": False}),
"unet3d_model_path": ("STRING", {"default": "./pretrained_weights/denoising_unet.pth", "multiline": False}),
"motion_module_path": ("STRING", {"default": "./pretrained_weights/motion_module.pth", "multiline": False}),
},
}
RETURN_TYPES = (
"UNET3D",
)
RETURN_NAMES = (
"unet3d",
)
FUNCTION = "load_unet3d"
CATEGORY = "AnimateAnyone-Evolved/loaders"
def load_unet3d(self, pretrained_base_unet_folder_path, unet3d_model_path, motion_module_path):
if not os.path.isabs(pretrained_base_unet_folder_path):
pretrained_base_unet_folder_path = os.path.join(ROOT_PATH, pretrained_base_unet_folder_path)
if not os.path.isabs(unet3d_model_path):
unet3d_model_path = os.path.join(ROOT_PATH, unet3d_model_path)
if not os.path.isabs(motion_module_path):
motion_module_path = os.path.join(ROOT_PATH, motion_module_path)
unet3d = UNet3DConditionModel.from_pretrained_2d(
pretrained_base_unet_folder_path,
motion_module_path,
unet_additional_kwargs=CONFIG.unet_additional_kwargs,
).to(dtype=WEIGHT_DETYPE, device=DEVICE)
unet3d.load_state_dict(
torch.load(unet3d_model_path, map_location="cpu"),
strict=False,
)
return (unet3d,)
class Load_Pose_Guider:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"pose_guider_model_path": ("STRING", {"default": "./pretrained_weights/pose_guider.pth", "multiline": False}),
},
}
RETURN_TYPES = (
"POSE_GUIDER",
)
RETURN_NAMES = (
"pose_guider",
)
FUNCTION = "load_pose_guider"
CATEGORY = "AnimateAnyone-Evolved/loaders"
def load_pose_guider(self, pose_guider_model_path):
if not os.path.isabs(pose_guider_model_path):
pose_guider_model_path = os.path.join(ROOT_PATH, pose_guider_model_path)
pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256)).to(
dtype=WEIGHT_DETYPE, device=DEVICE
)
pose_guider.load_state_dict(
torch.load(pose_guider_model_path, map_location="cpu"),
)
return (pose_guider,)
class Pose_Guider_Encode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"pose_guider": ("POSE_GUIDER",),
"pose_images": ("IMAGE",),
},
}
RETURN_TYPES = (
"POSE_LATENT",
)
RETURN_NAMES = (
"pose_latent",
)
FUNCTION = "pose_guider_encode"
CATEGORY = "AnimateAnyone-Evolved/processors"
def pose_guider_encode(self, pose_guider, pose_images):
cond_image_processor = VaeImageProcessor(
do_convert_rgb=True,
do_normalize=False,
)
# (b, h, w, c) -> (b, c, h, w)
pose_images = pose_images.permute(0, 3, 1, 2).to(DEVICE, dtype=WEIGHT_DETYPE)
# Prepare a list of pose condition images
pose_cond_tensor_list = []
for pose_image in pose_images:
pose_cond_tensor = cond_image_processor.preprocess(
pose_image, height=CONFIG.input_img_height, width=CONFIG.input_img_width
)
pose_cond_tensor = pose_cond_tensor.unsqueeze(2) # (b, c, 1, h, w)
pose_cond_tensor_list.append(pose_cond_tensor)
pose_cond_tensor = torch.cat(pose_cond_tensor_list, dim=2) # (b, c, f, h, w)
pose_cond_tensor = pose_cond_tensor.to(
device=DEVICE, dtype=pose_guider.dtype
)
pose_latent = pose_guider(pose_cond_tensor)
#print(f"pose_cond_tensor.shape: {pose_cond_tensor.shape}\pose_latent.shape: {pose_latent.shape}")
#pose_cond_tensor.shape: torch.Size([1, 3, 24, 768, 512]) pose_latent.shape: torch.Size([1, 320, 24, 96, 64])
return (pose_latent,)