-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy path__Tested__.txt
68 lines (57 loc) · 2.51 KB
/
__Tested__.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
class Load_CLIP_Vision_With_Projection:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"pretrained_clip_vision_folder_path": ("STRING", {"default": "./pretrained_weights/image_encoder/", "multiline": False}),
},
}
RETURN_TYPES = (
"CLIP_VISION",
)
RETURN_NAMES = (
"clip_vision",
)
FUNCTION = "load_clip_vision"
CATEGORY = "AnimateAnyone-Evolved/loaders"
def load_clip_vision(self, pretrained_clip_vision_folder_path):
if not os.path.isabs(pretrained_clip_vision_folder_path):
pretrained_clip_vision_folder_path = os.path.join(ROOT_PATH, pretrained_clip_vision_folder_path)
clip_vision = CLIPVisionModelWithProjection.from_pretrained(
pretrained_clip_vision_folder_path
).to(dtype=WEIGHT_DETYPE, device=DEVICE)
return (clip_vision,)
class CLIP_Vision_With_Projection_Encode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"clip_vision": ("CLIP_VISION",),
"reference_image": ("IMAGE",),
},
}
RETURN_TYPES = (
"CLIP_VISION_OUTPUT",
)
RETURN_NAMES = (
"clip_vision_output",
)
FUNCTION = "clip_vision_encode"
CATEGORY = "AnimateAnyone-Evolved/processors"
OUTPUT_NODE = True
def clip_vision_encode(self, clip_vision, reference_image):
clip_image_processor = CLIPImageProcessor()
clip_image = clip_image_processor.preprocess(
reference_image, do_resize=True, size={"height": CONFIG.clip_img_height, "width": CONFIG.clip_img_width}, return_tensors="pt"
).pixel_values
clip_image_embeds = clip_vision(
clip_image.to(DEVICE, dtype=clip_vision.dtype)
).image_embeds
encoder_hidden_states = clip_image_embeds.unsqueeze(1)
#print(f"encoder_hidden_states.shape: {encoder_hidden_states.shape}\n clip_image_embeds.shape: {clip_image_embeds.shape}")
#encoder_hidden_states.shape: torch.Size([1, 1, 768]) clip_image_embeds.shape: torch.Size([1, 768])
uncond_encoder_hidden_states = torch.zeros_like(encoder_hidden_states)
with open("_Test_CLIP_VISION_Projected_OUTPUT.txt", "w") as file1:
# Writing data to a file
file1.write(f"[CLIP_VISION_Projected_OUTPUT]: \nclip_image_embeds shape: {clip_image_embeds.shape}\nclip_image_embeds: {clip_image_embeds}")
return (clip_image_embeds,)