-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
234 lines (201 loc) · 8.02 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import argparse
import json
import logging
import collections
import fnmatch
import yaml
import os
import numpy as np
from tqdm import tqdm
import torch
from easydict import EasyDict
import datasets
from lm_eval import tasks, evaluator
import lm_eval
from quant_transformer.model.quant_model import quantize_model
from quant_transformer.quantization.state import enable_quantization
from quant_transformer.solver.calibrate import calibrate
logger = logging.getLogger("OS+")
class MultiChoice:
def __init__(self, choices):
self.choices = choices
# Simple wildcard support (linux filename patterns)
def __contains__(self, values):
for value in values.split(","):
if len(fnmatch.filter(self.choices, value)) == 0:
return False
return True
def __iter__(self):
for choice in self.choices:
yield choice
def parse_config(config_file):
with open(config_file) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
cur_config = config
cur_path = config_file
while 'root' in cur_config:
root_path = os.path.dirname(cur_path)
cur_path = os.path.join(root_path, cur_config['root'])
with open(cur_path) as r:
root_config = yaml.load(r, Loader=yaml.FullLoader)
for k, v in root_config.items():
if k not in config:
config[k] = v
cur_config = root_config
config = EasyDict(config)
return config
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True)
parser.add_argument("--model_args", default="")
parser.add_argument("--tasks", default=None, choices=MultiChoice(lm_eval.tasks.ALL_TASKS))
parser.add_argument("--provide_description", action="store_true")
parser.add_argument("--num_fewshot", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=None)
parser.add_argument("--device", type=str, default=None)
parser.add_argument("--output_path", default=None)
parser.add_argument("--limit", type=int, default=None)
parser.add_argument("--no_cache", action="store_true")
parser.add_argument("--decontamination_ngrams_path", default=None)
parser.add_argument("--description_dict_path", default=None)
parser.add_argument("--check_integrity", action="store_true")
parser.add_argument("--dtype", type=str, default='float32')
parser.add_argument("--is_quant", type=bool, default=False)
parser.add_argument("--is_export", type=bool, default=False)
parser.add_argument("--save_path", type=str, default=None)
parser.add_argument("--config", type=str, default=None)
return parser.parse_args()
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
task_names = set()
for pattern in patterns:
for matching in fnmatch.filter(source_list, pattern):
task_names.add(matching)
return list(task_names)
def load_model(model, model_args, dtype, q_config, args):
if dtype == 'float16':
dtype = torch.float16
elif dtype == 'bfloat16':
dtype = torch.bfloat16
else:
dtype = torch.float32
if isinstance(model, str):
if model_args is None:
model_args = ""
max_length = -1
if hasattr(q_config, 'model') and hasattr(q_config.model, 'max_length'):
max_length = q_config.model.max_length
lm = lm_eval.models.get_model(model).create_from_arg_string(
model_args, {"batch_size": args.batch_size, "device": args.device, 'dtype': dtype, 'max_length': max_length}
)
# load quant models
if args.is_quant:
lm.model = quantize_model(lm.model, q_config)
lm.prepare_for_inference()
else:
assert isinstance(model, lm_eval.base.LM)
lm = model
if not args.no_cache:
lm = lm_eval.base.CachingLM(
lm,
"lm_cache/"
+ model
+ "_"
+ model_args.replace("=", "-").replace(",", "_").replace("/", "-")
+ ".db",
)
lm = lm.lm
return lm
@torch.no_grad()
def main():
args = parse_args()
if args.config:
q_config = parse_config(args.config)
if args.is_export:
args.save_path = '/'.join(args.config.split('/')[: -1])
else:
q_config = None
assert not args.provide_description # not implemented
if args.limit:
print(
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
)
if args.tasks is None:
task_names = lm_eval.tasks.ALL_TASKS
else:
task_names = pattern_match(args.tasks.split(","), lm_eval.tasks.ALL_TASKS)
print(f"Selected Tasks: {task_names}")
description_dict = {}
if args.description_dict_path:
with open(args.description_dict_path, "r") as f:
description_dict = json.load(f)
lm = load_model(
model=args.model,
model_args=args.model_args,
dtype=args.dtype,
q_config=q_config,
args=args)
if args.is_export:
shift_list, scale_list = calibrate(lm, args.batch_size, q_config, True)
for i in range(len(shift_list)):
shift_list[i].cpu()
scale_list[i].cpu()
print(args.save_path)
torch.save({
'shift_list': shift_list,
'scale_list': scale_list,
}, os.path.join(args.save_path, 'scale_shift_list.pth'))
return
if args.is_quant:
calibrate(lm, args.batch_size, q_config)
enable_quantization(lm.model, except_quantizer=getattr(q_config.quant, 'except_quantizer', None))
from transformers import AutoTokenizer
for task in task_names:
if task in ["wikitext",]:
test_data = datasets.load_from_disk("/mnt/cache/weixiuying.vendor/wikitext/wikitext_test")
test_enc = lm.tokenizer("\n\n".join(test_data["text"]), return_tensors="pt")
test_enc = test_enc.input_ids
nsamples = test_enc.numel() // lm.max_length
nlls = []
for i in tqdm(range(nsamples)):
batched_inps = test_enc[:, (i * lm.max_length) : ((i + 1) * lm.max_length)].to('cuda:0')
batched_labels = test_enc[:, (i * lm.max_length) : ((i + 1) * lm.max_length)].to(lm.model.lm_head.weight.device)
loss = lm.model(batched_inps, labels=batched_labels).loss
neg_log_likelihood = loss.float() * lm.max_length
nlls.append(neg_log_likelihood)
if i == args.limit:
break
ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * lm.max_length))
results = collections.defaultdict(dict)
versions = collections.defaultdict(dict)
results[task]['ppl'] = ppl.item()
versions[task] = 0
results = {"results": dict(results), "versions": dict(versions)}
else:
results = lm_eval.evaluator.simple_evaluate(
model=args.model,
model_args=args.model_args,
tasks=[task,],
num_fewshot=args.num_fewshot,
batch_size=args.batch_size,
device=args.device,
no_cache=args.no_cache,
limit=args.limit,
description_dict=description_dict,
decontamination_ngrams_path=args.decontamination_ngrams_path,
check_integrity=args.check_integrity,
lm=lm,
)
dumped = json.dumps(results, indent=2)
print(dumped)
if args.output_path:
with open(args.output_path, "w") as f:
f.write(dumped)
print(
f"{args.model} ({args.model_args}), limit: {args.limit}, provide_description: {args.provide_description}, "
f"num_fewshot: {args.num_fewshot}, batch_size: {args.batch_size}"
)
print(lm_eval.evaluator.make_table(results))
if __name__ == "__main__":
main()