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Machine Learning on Resource Scarce Devices

I Most Machine Learning (ML) models are
designed for large machines.

I Deep Learning on GPUs, TPUs.
I However, there are billions of devices with

I small memory - few kB of RAM.
I small compute power.
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Case in point: Arduino Uno

The UNO is a simple device easily accessible to a large strata of
developers and amateurs.

I 2kB RAM: often smaller than a single data-point!
I 32kB Read-Only Flash

Image Source: http://blog.ocad.ca/wordpress/gdes3b16-fw201202-01/
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Machine Learning on Resource Scarce Devices

I Resource scarce devices such as Internet
of Things (IoT) devices are dumb

I used only for data gathering.
I data transmitted to the cloud, where

predictions are made.

I Transmitting data to the cloud has issues
I drains the battery of devices.
I privacy, latency, and bandwidth

concerns.
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Machine Learning on Resource Scarce Devices

I Question: Can we make these devices Intelligent?
I Existing ML models either don’t fit on these devices or

perform poorly.
I trivial compression leads to poor performance.

6 / 35



Introduction
Background

Significance of the Work
ProtoNN
Results

Conclusion

Prior Work on Memory Efficient ML

A huge line of work exists on designing memory efficient models:
I Compressing Neural Networks: [HMD16, IHM+16, YMD+15] .
I Pruning Random Forests: [NWS16, DJX16, KS12].
I Compressing k-Nearest Neighbours (kNN): [Ang05, KTWA14],

[ZGK+17].
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Prior Work on Memory Efficient ML

All these have one or more of the following problems:
I models don’t fit into tiny devices with ≤ 2kB of RAM.
I perform poorly when compressed into tiny devices.
I Don’t generalize to other supervised learning tasks such as

multilabel classification, ranking.
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Significance of the Work

Design an algorithm that can
I be deployed on tiny devices for prediction.
I provide near state-of-the-art performance.
I perform fast predictions without draining the battery.
I handle general supervised learning tasks

I such as multilabel classification, ranking.
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ProtoNN

I ProtoNN is a Prototype based kNN Approach.

I Why kNN?
I simple and interpretable models
I generality - can model complex decision boundaries

I However, kNN has several issues:
I large model size
I large prediction time
I poor accuracy - how to compute distance?
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ProtoNN

I ProtoNN jointly learns
I a sparse low-d projection

I a set of prototypes in the low dimensional space
I and their labels.

(a) input

→

(b) low-d projection

→
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ProtoNN

I Joint learning of low-d projection and prototypes:
I reduces the model size.
I lowers the prediction time.
I improves the accuracy.

(a) input

→

(b) low-d projection

→

(c) prototypes
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ProtoNN

I gives explicit control over the model size through hard sparsity
(`0) constraints on the parameters.

(a) input

→

(b) low-d projection

→

(c) prototypes
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ProtoNN (Formal)

Input:
I Feature vectors {xi}ni=1, where xi ∈ Rd .
I Label vectors {yi}ni=1, where yi ∈ Y.
I For classification with L classes, Y ∈ {0, 1}L.

Parameters:
I Low dimensional projection matrix: W
I Prototypes: {b1, . . . ,bm}
I Label vector of prototypes: {z1, . . . , zm}
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ProtoNN (Formal)

Decision Function for a point x is given by

s(x) =

sum over all prototypes︷︸︸︷
m∑
j=1

 K (

low-d projection︷︸︸︷
W x ,bj)︸ ︷︷ ︸

similarity with j th prototype

zj

 .
We choose K to be RBF kernel.

Training Objective:

argmin
W ,{bj ,zj}j∈[m]

1
n

n∑
i=1

‖yi − s(xi )‖22

s.t. ‖W ‖0 ≤ sW , ‖B‖0 ≤ sB , ‖Z‖0 ≤ sZ .
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ProtoNN - Optimization

I We use Alternating Minimization to optimize the training
objective.

I we alternate over Z ,B,W while fixing the other two
parameters.

I for each sub-problem we use Projected SGD with Nesterov’s
acceleration.
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Analysis of ProtoNN

I One of the first analysis of an algorithm for resource scarce
devices.

I Notation:
I µ+, µ− - centers of +ve and -ve classes.
I Fix W = I , Z = [e1, e2]. Let b+,b− be the prototypes.

Image Source: http://recognize-speech.com/basics/introduction-to-gaussian-mixture-models
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Analysis of ProtoNN

Theorem (simplified)
Let µ̄ := µ+ − µ−, n→∞. Suppose:

I (Separation) ‖b+ − µ+‖ ≥ 8‖µ̄‖ exp
{
−‖µ̄‖2

4

}
I (mild regularity) d ≥ 4‖µ̄‖2

Then, gradient descent update b′
+ = b+ − η∇b+Remp, with

appropriate η ≥ 0 satisfies the following with constant
probability:

‖b′
+ − µ+‖2 ≤ ‖b+ − µ+‖2

(
1− 0.01 exp

{
−‖µ̄‖

2

4

})
︸ ︷︷ ︸

Geometric Convergence
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Results

Variety of experiments on several benchmark datasets:
I ProtoNN vs. Compressed, Uncompressed baselines.
I ProtoNN for binary, multiclass, multilabel classification.
I Energy consumption, Prediction time of ProtoNN on resource

scarce device (Arduino Uno microcontroller).
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ProtoNN vs. Compressed Baselines

Figure: Model size (kB, X-axis) vs Accuracy (%, Y-axis). Left two
columns are for binary datasets and the right most column is for
multiclass datasets.
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ProtoNN vs. Uncompressed Baselines on binary datasets

Dataset
ProtoNN
(16kB) kNN SNC BNC GBDT

1-hidden
NeuralNet RBF-SVM

character recognition
model size
accuracy

15.94 (400x)
76.14

6870.3
67.28

441.2
74.87

70.88
70.68

625
72.38

314.06
72.53

6061.71
75.6

eye
model size
accuracy

10.32
90.82

14592
76.02

3305
87.76

1311.4
80.61

234.37
83.16

6401.56
90.31

7937.45
93.88

mnist
model size
accuracy

15.96
96.5

183750
96.9

4153.6
95.74

221.35
98.16

1171.87
98.36

3070
98.33

35159.4
98.08

usps
model size
accuracy

11.625
95.67

7291
96.7

568.8
97.16

52.49
95.47

234.37
95.91

504
95.86

1659.9
96.86

ward
model size
accuracy

15.94
96.01

17589.8
94.98

688
96.01

167.04
93.84

1171.87
97.77

3914.06
92.75

7221.75
96.42

cifar
model size
accuracy

15.94
76.35

78125
73.7

3360
76.96

144.06
73.74

1562.5
77.19

314.06
75.9

63934.2
81.68

The model size of ProtoNN is restricted to 16kB. No model size
restrictions are imposed on the baselines.
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ProtoNN vs. Uncompressed Baselines on multiclass datasets

Dataset
ProtoNN
(64kB)

kNN SNC BNC GBDT
1-hidden
NeuralNet

RBF
SVM

letter-26
model size
accuracy

63.4
97.10

1237.8
95.26

145.08
96.36

31.95
92.5

20312
97.16

164.06
96.38

568.14
97.64

mnist-10
model size
accuracy

63.4
95.88

183984.4
94.34

4172
93.6

220.46
96.68

5859.37
97.9

4652.34
98.44

39083.7
97.3

usps-10
model size
accuracy

63.83
94.92

7291.4
94.07

568.8
94.77

51.87
91.23

390.62
94.32

519.53
94.32

1559.6
95.4

curet-61
model size
accuracy

63.14 (140x)
94.44

10037.5
89.81

513.3
95.87

146.70
91.87

2382.81
90.81

1310
95.51

8940.8
97.43

The model size of ProtoNN is restricted to 64kB. No model size
restrictions are imposed on the baselines.
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Multilabel Classification

Dataset ProtoNN FastXML DiSMEC SLEEC
mediamill

train samples = 30993
feature dim. = 120
Label dim. = 101

model size
Precision@1
Precision@3
Precision@5

54.8K
85.19
69.01
54.39

7.64M
83.65
66.92
52.51

48.48K
87.25
69.3
54.19

57.95M
86.12
70.31
56.33

delicious
train samples = 12920

feature dim. = 500
Label dim. = 983

model size
Precision@1
Precision@3
Precision@5

925.04K (40x)
68.92
63.04
58.32

36.87M
69.41
64.2
59.83

1.97M
66.14
61.26
56.30

7.34M
67.77
61.27
56.62

eurlex
train samples = 15539
feature dim. = 5000
Label dim. = 3993

model size
Precision@1
Precision@3
Precision@5

5.03M
77.74
65.01
53.98

410.8M
71.36
59.85
50.51

79.86M
82.40
68.50
57.70

61.74M
79.34
64.25
52.29

Performance of ProtoNN on multilabel classification.
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Experiments on an Arduino Uno

Energy (mJ) = (0.2455 J/s) * Prediction time (ms)
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Conclusion and Future Work

Conclusion
I ML for resource scarce devices is a high-impact research area.
I ProtoNN:

I can be deployed on tiny devices (with ≤ 2kB of RAM).
I can provide fast predictions.
I has state-of-the-art performance.
I can handle general supervised learning tasks.

Future Work
I Multilabel Classification with millions of labels.
I Unsupervised learning tasks such as Nonlinear Matrix

Factorization and Anomaly Detection.
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Questions?

Poster: Wednesday session (poster #16)
Website: http://harsha-simhadri.org/EdgeML/
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