-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlukowsk9-final-4.nb
356 lines (344 loc) · 16.2 KB
/
lukowsk9-final-4.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 16360, 347]
NotebookOptionsPosition[ 15862, 324]
NotebookOutlinePosition[ 16204, 339]
CellTagsIndexPosition[ 16161, 336]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"X", " ", "=", " ",
RowBox[{"SparseArray", "[",
RowBox[{
RowBox[{"{", "\n",
RowBox[{
RowBox[{
RowBox[{"Band", "[",
RowBox[{"{",
RowBox[{"1", ",", "1"}], "}"}], "]"}], " ", "\[Rule]",
RowBox[{"-", "2."}]}], ",", "\n",
RowBox[{
RowBox[{"Band", "[",
RowBox[{"{",
RowBox[{"1", ",", "2"}], "}"}], "]"}], " ", "\[Rule]", "1."}], ",",
"\n",
RowBox[{
RowBox[{"Band", "[",
RowBox[{"{",
RowBox[{"2", ",", "1"}], "}"}], "]"}], "\[Rule]", "1."}]}], "\n",
"}"}], ",", " ",
RowBox[{"{",
RowBox[{"100", ",", "100"}], "}"}]}], "\n", "]"}]}], ";"}],
"\n"}], "\n",
RowBox[{
RowBox[{"u", " ", "=", " ",
RowBox[{"Table", "[",
RowBox[{"1", ",", "100"}], "]"}]}], ";"}], "\n",
RowBox[{"For", "[",
RowBox[{
RowBox[{"i", " ", "=", " ", "1"}], ",", " ",
RowBox[{"i", " ", "<", " ", "8000"}], ",", " ",
RowBox[{"i", "++"}], ",", "\n",
RowBox[{
RowBox[{"u", " ", "=", " ",
RowBox[{
RowBox[{"X", ".", "u"}], "/",
RowBox[{"u", "[",
RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}]}], "\n", "]"}], "\n",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"\"\<Eigenvalue from power method: \>\"", ",", " ",
RowBox[{"u", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "]"}], "\n"}], "\n",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"u", "[",
RowBox[{"[", "1", "]"}], "]"}], "*", "x"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "4"}], "}"}]}], "]"}], "]"}], "\n"}], "\n",
RowBox[{
RowBox[{
"Print", "[",
"\"\<From the book we have that If \[Lambda] is an eigenvalue of the \
matrix A and if v is an accompanying eigenvector, then one solution of the \
differential equation x = Ax is x(t) = e \[Lambda]t v. Thus we can make a \
plot with the smallest eigenvalue and eigenvector to get a distrobution of \
our solutions. Hence, we can say that asympotic behavior of the solutions \
approaches 0\>\"", "]"}], " ", "\n"}], "\n"}], "Input",
CellID->1],
Cell[CellGroupData[{
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"Eigenvalue from power method: \"\>", "\[InvisibleSpace]",
RowBox[{"-", "3.9961311942634237`"}]}],
SequenceForm["Eigenvalue from power method: ", -3.9961311942634237`],
Editable->False]], "Print",
CellChangeTimes->{{3.690772993871728*^9, 3.6907730104281836`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVkmc4Ft4bxx/rMR4js4QySyISRench0opZFVkJEooEZG9ImRElJn8EIWE
ImRvUfaoZGfv7bH+/m/Oub7X9z6f+/PiCJhYa92lJBAIe3aP/98K9qH0M8Re
yGKIU7VNroSF0M46Coo+UE38THXLsQKKHmTDMFcfVD0JYD1xqwL8LgXl1Yj3
AZGoZ3VEuQJ4CUrJgbp9wPZTSMeVowIuWH/04MzqA7cYcnNuTjk0HlKKjZDs
B5s9OWNXl8uAn4Zb631vPyyGqE/2CZUCjd2z4Ojxfpj7mpBsvV4CE/2Ldc+X
+uGf0R4Z+aYSyC36CVYMA6CwaBnj6FIClx/7SEifHICg68aEhM5ieDw0S1cU
PACuUS/vqEcWQV15TWmTwiD8cygiiOJCSGncHA6+OAjJHcxSdHyF4NslzaCq
NQjTi+VGe8kFoDQdr1N3bxD2DXCUln8pgKJ9T8bLXg7CHfKFUhAvgCzrw+w5
Y4NQ/yvbMl0oH6L4/M0iIoZAhdwuniqdBw6iJYFab4fg3r368EWOPLh2Yilr
T9oQZJ5LzL+3mgtsKsYbQaVDQHsx4l5NUS4EPZYL9Z0Yggf7yTE3VHLBs2Gs
wAEPg1X5KRxn8QUsnFSY9KaGwTaSLUa7OgfSeFgNjVaGIYxYtj78MQemirsz
TAn/QJL9U3T46xx4SGmu+pDjHzSY2NBdMs+Bx4HPAp8q7OYEnEnPlAMebyrp
M4P+wWuOVPYW/Wx4VX6WSCUxAkp8xGlPpizoNKW5TndqBDKm49qnFz7BPuKP
d0yKIyB/grmL1PAJYi4bXNh3bQRU05nJPS6fIKHN2UfCbQSc/P+tNPZlQvq/
r5S6P0bg/E2Pgsysj1BOL72TYTUKgd+PUPY/TgdRHamvzx1H4YDeW6uvV9Mh
NP6YtfnT3T6PIFQulg7GJ472CUWPwu2xFH3LgTTYNhAujakaBS3lBx8YNdPg
dBaXhz/PGDxpaqC5If8Bvlzf2DatH4NN8tz+i+KpwPvfep5i+xiIPlyIm2BM
haeTqw8P9o3BBeVbofnTKaDludT7e2kM2nJoRlo/pcDch+kSTf5xuPpVfu+G
bApIbPW5w5Nx0De82T+m8g5Skqq294tMAAVN+ZvKkCSw8dUZAMkJuP7Ft4HR
IQnO3BuuvCM/ARmqsjL2hknQLEYdkKk2ASVt6fuSxJNgPfscu5LDBHDclRx/
2JgIqmUVhy1qJ2AiJEHwHWsiLPaUaXy1mATORiaPgOwEKCnRONFjNwkKfUFy
j+ISwD+hn5PCfRL+6gnE2PklAO8dwp/LLydhfX71Z61hAihPwt3ewknwjXxz
M42UADHrJU40jFMwWH61wKE7HjBXcaJ25hS4Rbr/MfaIA+pXnNYX8qdAOO3M
LJtBHNSxPzxzqmIK/LZSS+fk4uAq68H2/Z1T4C7LWXJsMRaMGL1oBremoNg1
RCfTIhZcKC+Y26hNw2C6zO9goxjIm2mUCJ6ahtMhYfOWZlHgbCVCdl+ZBhEW
EX+pS1GAptxqbAgz0BHnEcYjFgXV48du6XDMwKVGqXO3ZyKhfTg0lEdhBtIo
I/lSHCNh4bfO4ofAGRg0/Q0z4a9BorYnv0ZsFp5ucWxcHI4Arpn706Gys+Cl
cdtVpi4CCJwbAvp4FjZP9OUrZ0RAuwl34Oy1WfC83B/153EEuG5fM9znNQsS
fP1O5bQR0CjbRGHZtcuLay3XkgkH2Vbjd0SlOdhKvpKLU8Mg7e770vsX5+Di
k+Zrfi/C4MD67K9m1TlY17rQPf0kDOj4PZhjb8yBcX1HF7dKGPRYvXkiaTUH
Kz9XD45PhYIP/W8V3ag5YK5V8sSnQ6Eda898mJkDF7HQgw4dwUB+O/QmZ3EO
rLb69EhZwSCwY6f2bW0O1DO+ejU9D4aHxREZjZTzcL/uT+YQDgba052Ws1zz
wPCOQ0D2UxCcPqE3KgPzkO7kZno5IhASRG71l76Yh9xiltwi9wCo8Zl9URcx
D4dbXTYrjAJgesgDWqLnoTP/itE8CoDTiQnxg0nzYHHz0PvqHX9oOzBoQJM/
D6+qpoeUn/oDcd/dX5f756FAsBy8wvzgAcP91g6pBbiROLcYWO8LKcVceZdP
LoBRo/nITLov9NlURJeeWQDVWD5u5xBf0Orivv1BeQFGWLLv0On4glxy3ayr
wQIc6OtO2+73AWp0iEnYfwG+U0RGCFH6QNyjgYu2fQtwRa7vxsQtb+gUDj46
OrwAO+GLRXPK3sDSLcdiMLEAnRIXObiPeYM3Cu28sLwA7Eb6Az83vcCcBHe5
SYswOZS6Vh/rBTLv4rzLTi7CoksYoavPExq6bxQzhyzCVymtF7DtDt6/Rzkt
wxdhn5ri/FC7O8j1PHlYHbUIYVVPn5amu0NyX+RB16RFuB/ezMZz0x1cR7q8
xvMXoYY+eES/wA0klm4oVw0twlL4oZlqL1d4waLb5CS/BAvRpxduyjmDMuvY
4Q60BI9eN3UbcjrDJpujp9T5JahXnLJ+seAE5lxRx0fVl4CB+lee20cnwHzd
4Tp3lqDhjtGkh4gTzIvp6kq+WIKpvzP7RvgcQVtZd2B4eAnOpHVsJB5zgEL2
401D40vQ3PmjgMjuAIID9MWDM0twf39uR9CqPSy4fIvqX1uCzwmWrjtl9hCa
fUCjh3EZoraLhp2u2UMj77+SNpllCLTxq4n3eQznFx/FVfgsw57pSoNQsi1k
lF1+Xh6wDO7Pn/6ZG7QF9hAhx7KQZTjsm1r+sMEWBkU7tEuilkHOevh4RZwt
eBrJkQozluFHb3hGJbaF4vptp+z2ZThdrjrHGvIITiYE3kgQXgHbn2dLJxVs
IKvcw4kktgKiX5Q2CIdt4OiQXayD5Aq0Nek3nmC1Af5DBn2qp1fg/Ytw3qEG
ayBliN9bv7rb3w/zfClgDf1ffzhouazAdGcr8UWXFQQ2sbymbl0B/3Ej05X7
94E4T5Vv3bUClQFnlBaV74Mn29qv3z0roMW+h0tQ8D44XOvnyx5dAZvC8y84
flmC8Z+sd4ZbK5CzT8T9goolnBzVzM0TXYVT/QeF46UtoH87vN3cYxXm36bM
2h6+B4xTzYFPfFYhy7hfQJnhHsj9Yjr3LGAVeLpY96JpMwj97JedFL4KN6LV
wmI/mwE2dwnpTV0Fiw7HClolM/ivxeSSTvMq5IwWFLvdvQsmyceLQGANwp+b
vc+qNoWQsId26ofWQL1rrbgmwxQK3dPFDI+uAU3+4qnNcFNg0xOJdpZdA2TE
+63KxBQqmbgdclXWoKViMK+WwhSEnxCkjtqugbVqxbjdBRP4p9KUxFW5Bi8k
eQ+aDBqDcODhF2F1a1DGLvLzWoMx3Gn0cGb8uQasDxwXzb8Yw6C6lCblrzVo
z324PPXMGHq1w7anZ9bg1/wD6XsSxtBtqK1XvX8dbKIarhMIt+D7oy7mx7br
EO6pF69rbwD0nyXJM0/WoXb0yUcPdQO4tOT3z8JtHdqt6Kv+HDaAWge5olv+
60C6oz9y/I8+VLlEW1yJXwdbApuE+nl9KPbVrxL8vg5FR0It6flvQlZ0n1OL
ABnoKXz2fN64AQ+O8P6WPkwGc9kw6ZA/N0C0QPd0hDgZhDoCLCK+3YC33S3k
66fIkJIfLingegNC9la59KiS4f3Q2V7Znetg9eq92+gTMlCnLzbtZ7oOYmGP
vLZ+kKE27YzhTWUdGOHPHDBqI8N+cekBiaM6kJg1oVjWTYZ/D4ubRfbowP5m
U8qnQ2TI5gmX9P6tDfQs15/SrZPBstnt3aiNNowFnfZlF96AiO9mzArJWvDO
nyrgiPMGlMerWTYKaQLbsL/7MY8N2Fz2lTJk1gRPYH58wmcD5nP7qujWNeDm
yr5bZ0M2gEuW1Prppwaw3Dkmq5m4Af/lTv2Vd9EAJ9AbcPy+ATQSAx5KOVdB
bSVTvm7/JnRmei9WqKtBoaaM5I+Dm9C+7/I5XjE1EP1YINwqvAlP9xSaJ9Go
AeWdKpaeY5tgHhRx9XSxKnxt+fVvVmkTrJ626/kcUwWBj9Qv997fBKmkpXRd
7iuwbHpzwuzbJrgNRMQ+Z1YBB/YN9u6yTThHvLQ/fOoSrFTEnlWp2QQGqcDk
+u+7WeBv6NGWTYhNtRgs9bsEa323Ts2NbMIIV8D571SXgKx/18eJbQuemkwU
CFBfBIKOzYEgiy0Yjyl4eV74AnhSsV7aergFPxOFSmJpLwDF5+xHDx9vgb2b
eiX35HmgZFus0vDYgs+ePv4BOeeBqtn+PuerLdB2uaImfe48EFVd8uPLtkDr
/TFe1/vngHT+mVb23m246XT9eXSnIiiUWrPW8G4DXYVhAXWZIjw8rdf8W2Ab
cJWye9AHRWiVElenFt8GzpMS8vOuihDD16pyA28Do+jVAJKIIoiu8ilumW+D
dKl85x1nDOfTciVVCrdByjFL2/kRAgeRtzOGpbt8hrzEucsI3if4f7St2p3P
jy+MFEZAitQ/GvdzG3y0bqs/6T4LrU8pDs8OboP7kdQb9kpnwdhQ7cAr0g4o
+2q6yh1UANc9/xgHDHbgj9D6f8pkeRD7nYN7bu+A8woNLf1vefiV5Pm4y2wH
9g6FWC8WyMPJU7w9P2x24PrZTB9wloc5Q+30Qp8d+MlfcuvTphyYpperRGTs
QFCZcHIlnRxcVo5/dnFzB4QZuSsdFU7CJu1Jw/8IBPxeR22gj/8ktE/xrh6g
IuBx0kewoDkJ3nkTYvvpCPgBDw/74E9Z6FV59nIPGwHTCd1xuWcqC1E2xbe3
RAj4/os/Um9eygBjyVFClxoBZ8qU2r6hOwHTqvxfnmsQcFlmm9r2jDT8/MNh
jrQJmINPJ8WrQxperG81vdMl4Bt6AlyzidLAJtv89rEpARuaKk3dAmnYl/EY
2JwIeKatl9PW/TgIxxS7qyXv8uzMYo9wSAHNkRxpilQCDq4td6HfkoSRrykj
Xz4QsN/SPiK5RRJSO16o834i4KwTr7L9XSVBjNXkwGQBAbMqaYxrtx8DKX9i
iX8TAWcrsejfCpGAsw5XtyrJBNx/obristhRWLEcc1HZIuDVrlnFI3RHIeuW
F/nnDgFP0bEmSY+IgaDK59Vf1BQ48MrqiepEMaDj3bswy0yB00uuFg3xiUF7
ee8IjxAFZhlNS+jmOQIPmB42212hwGbndHKx7GE4REl7dV2NAmdd/Eyxb99h
6Ft5+8NdgwI7TvfMsW8cAq3+lu8B1yhwjWT6jmP5IZD7LFv99hYF/vzXb3jh
6iGg1tsqaLCjwOWC9Z/c7UQgLjkoSSiOAtvF8eTVtQnBrXMnFPriKTDP1DWN
7/lCIDj4qz3mv9195p/S5t4IwfuDh4lsqRT4vNtAV5q5EHyJKTcn5FDgxWc7
6U07gtAYuiLxt5YCa9xKbMuSEYQtV+P814sUWMj1M2/gV34o46HV1FqhwLMp
zmV1CfzgU/hxnGmdAnsV+RqLPOcHhjXyft9tCtxeNDR12pAfuOxeudnRU2K+
hsTUVmp+OGbxXUnjICUOCDtSL/D5ABhdk/lBf4USW3/8LH9fiheMedQS8tUo
cVxSlUExAy/cHrhrd0+DEtcWE/8q/uOBO1aR3NXXKPF73eNj/TE8YOFLvutp
TImTmuQHrel44HFu2faK/S7/dql61BQ3POdUkxpOoMSu6s0t+l17IejPXarw
JEq8ZTr7ze3rXgj+z71TMYUSbxvHoO+ReyFUIsv1bTolVvosIDaouxdeXWCv
v5lHie1q7tjS/uWCBPtft1saKPGxLS+P1SlOyO24G16yQolnminYyUc4IJRC
6DisU2KhvS6GHXs4wFKi/2fpBiXOqJCkbF5lhwO+NxnKCVTYbWx/iWANOzyT
uepVyUCFVRyVquXvsMP1cDnrugNU+N/Zvi7GFDZY1SBdaVWmwuvtZbXKwAqt
rnVjWipUuGM5Vaz6CCtkvPd91naFCn+uqTQy4mAFYwKhol2DCitvEXL7x/dA
3aclua6bVNiEy9lF4PUeiGLuPdTzkArfW3xAmhlhAfnGLMqR11T4Vh9rnoQX
E/AmuhTGRVPhYteKbRU9JiA4Kttqx1Hh342PZOOOM0GdUM9A2X9UmCYmQGVg
kBGuu9CWx2ZQYckIhaMjFxnBVszIQ7OCCqcrEohveEiQ4U/aLJqmwh6H82uG
Rukg1Kjzs90cFa5dWCo4VUMHdjL/3RdbpMLf7a6cKEimg9P9J/9ErlFhwUDz
inMmdFB/yqTQlooaH1+zTbfpo4WRkXxHUW5qnFar7bo8QAT+C2bL4eepceyq
zF9uIg30eHY84b1IjYsTxCVDJ6khqug8OVmFGue5xhNEW6iBVUZoJ1edGt/7
SeX0LY4aKIX66bp1qTED95q4lSw1/CPc5OW1osZCZ8Xzuh5QQVqR2rnkV9RY
6gjS+7JAAWZrRdXiUdTYLJIczthDAUIy4pdyY6ixWEjsPa9qCohLZ1CreUuN
F7/rqJRFUUBwTO31sQ/UeDqEneUFpgAbR0VL8RJqzD6Ssa75igCyMrJhX0ao
sWb6fB7Fu20kFcmlLjVOjTPXcAGnxzYSI68yZExS49qZhfe6etuIv6zQJ2lu
t89yM7dk3kYMqtjxJZka85g3HPzqvIX6Ta/csmGmwZouZ9mr9DfR8/DbEuIn
abBI+9XjkoiMfFaUJlLlaLDiTYs3uXxk5KEnnCp0hgZrF+vK39laR48PjvLz
YBpcPsNwWr54Hd1Kf8DBcJkGK5nf2ipC60im8snGqCENfvW9UJlCZQ31LQTX
J/nS4NGTIUUnnVbQ8I5rwjV/GtxJvEZB0l9BY4wPntAG0uBBKeVa2rMraO7Q
ZZH7oTRY54/VlhPFCiLoE72kY2nwngsC0meClpFgpbtceRYN9i3p/4/ywxIy
C7dO7f1Dg1O/pc0obS8gywQj99BeGqzwMvZq5fACevhR7ZrSAA0+azs9ebdh
AT2pPUqVMrLLv3fgIGv0AvLfGDWymt/NDXSOZNkF9MHUmGuTSMTnnr3bnLef
R1MnNH25pYmYj6s47BLTHKpPGT70RoaIK/nMxnUXZlEKt2Md/ykiniPbsGl/
n0XGO/EkUQUi7rDJCfvrPIvavk+FnVQmYs6DVTbne2dQ4W3/eO2bROw0eYNZ
OHMaBbwo/RrsTcS2b6R5gm0mkRmlth6rLxF/LFMqEVefREr2I+QIPyK+2fPA
dvXoJNq8yYTigoiY4oXXSaaxCWRzSL8q7TUR7/3ge0PGZALpFq8016YRcWc3
UeSc0Tg6NCkxQdFGxOWgqU/xeBQx0jW9+9ZBxOw6QYuiOqNoUdjmtn03Edfb
3ah3kRlFZUY53WN/iRg02c8lLo+gm60na5vGiPhYQRbXlNMICimA5DfbRKxa
2OSs+PwfWvbTNJIXo8VCV3RfPq4bQj3JC9yL4rS4QKxlPPLjEKooD+/IkKTF
LyxjC/teDqGQjQ5Vflla3GuuRtljOIRErW+eocW0uKR7oslreRAZXDfd13GN
Fns6L1joHh1EVcL2rTZetLgyqqNj5lM/eppaqLv5lBYTndJdqmP6kZIYoc/v
GS1On7izmufbj8olAyfjA2nx3P6QsXH9flRy+j/qH69ocUiCNVUQfT/6qvHj
5JE0WpxxOP7epbZelOYqEjvQSov5d0An0LEHWexYClh10GKdl5z+Njo9SNQ7
K3WtixbnzS35PJXqQSl+Z76w/KXFd5P/zB8f/4OSXmr+ODu669sTrZFm8AfF
vXfbid6gxZE1hJauK7/Ri/YOUy1hOvzdPSjzg0o3CnIPFm45RIdPpvRyPjna
jZ6LXvh39Qgd/i3XQ2fJ1I18Xb+YqR2jw1stel2lLV3IRTjc4pIcHRbM86Y/
ZNCF7j3WsEaqdLiL9zxX7pNOBBwNzmKP6fBV/uSy9Lp2pFDifeaDAx1+62Jg
0Z7Zjk6bn9487ESHO9UOnuB71Y5kiz64ibjTYWE18efMJu3o6B1/T35/Omx6
jbR0f6sN7f1y4RlXHB0WKqurnJVvQ7PaZWGUVbs8lRULzvoWtJLq++BrDR0u
aUqU25/dgrY3Ll98UE+HuUtFDCG6BTEmd2x2/KTDMslP18ctWpDo0sS9D7/o
sP+/M/XfGFuQcQQn0pilw80Lx36K6zaj5nbLiTf76bFIQIGKBsNP1CUqVa3F
R48371hu/Bz4gXpdl9/S8tNj+j3vL/sU/EBTwp7XHonQ41DvuNgwix+Izv5V
2Xkpepw+Xcsq2diIFDnLXk9eoMdCdXX9J2MbUM41znPyj+ixk6p4b7RRPXrJ
4jFWakePPxIEzNNRPbKtHwtWdqDHlnNjgv8O1KPjZ4u6tV3ocV7PL+PmvjqU
JWz68KEvPT5mY+3raVqHMhezopOi6bH5+aAnvLa1KC1MdY6pgh5nDO+JXk2r
Rs+v5L2KqNr1X3cayH5RjSxp+M/w1NLjNj97t5DH1eiI06KvaONu1vOnykTV
6L1xDM+5TnocoJod69VehVIkx5QdJ3b9wP3idWIVSvrx9M0gGwOeO3fPK8ar
AgUd3zB4y8mAq/9WzxiaVyCHV7a8BvsYsAf1lZpzVyvQJcPbsR18DFiOU2PN
nq8CzUyh6DpRBjwxOnTN+ls5kmMkR2QiBvx93PN4yFYZ+nHZJsjZkgFf7vbV
eCVdivIyR6+csmLAeTVF4gx0pSiB7RZpyZoBx3SuMxb8LUG2v9WeW9kzYNtk
1zeVASVon+VRf2NPBnwt5Pejp8PFyCRg5Knyawa8ItzyxzK5CK3WGriwVTDg
nDCyUseVQnRAW9m+oooBX9fiZ08QLUTKvZLWtrUMuC9wnhhDU4heL1GatjYy
4OxKe8P9ZQVIRuDD5ZddDLjhrM/ihVMFyNZ5mZttmgF/ICwg9mP5aEo8JJ91
Hwl/yZh4PXEmD3HkP8kp30/Cd5g+F4kcyENnzt3OeMRHwhXLq8X+hDz0XE8m
oUWQhDUt6t2qq3PRkWe//cIkSFjdrUOCQysXmfUdusF6joSXQJHl16MvqD+s
dHnPQxK+9L41N7kxB/V7qxW+tCFhnpaZTtHcHDRg98edw46EWdNW1b6/yUGD
11Zp9zmScNru97pjnYOGuCX3H/QmYSahMfFF9hw08l88knhNwr5CHw/pmmSj
yWw3P5USElbOl6zSZM9CU4kk1YYyEs4cFlxx2v6EpsKj96hVknBEm/0L787d
bJ8brVFHwsdizS8f8fuEZuSn02+0knDJygB3zUQmmis3aL47QsItL1r+0n77
iFZaznB7MzPix6cUpVnd0xHBqmtVnpURJ38pFOvUTUcMdHad8+yMuIB0JuTH
iXR0AKWF3+ZmxKy3w3y1JtLQhbR9zIrCjJj/r3P7R700FOG9TEk4zYhD14+y
2yh+QCdOfJpyu8uITwhoEs1OpCKFn5cbZM0ZMU8abxuZPRUpW4x8mLZkxEUK
3OKFSyno5lu+e4Y2u+9POsd9zUtB3qSgAQUXRty2laKQqpCCWofMOzdCGXHd
ZeskUY13yCZCsMypiBGvVns4KEQkIa1XJhZUpYxY9sBxW2eXJCT7OpEtuJwR
n/5rUNRlkoTIkYJ3E2oYsT7P5pvZ40nIN1aQobaZESsPiqmHtiSimERBHY5/
jJidIa/cjisRVWUJjmUyMeEC2ffZpbkJKCXbJExuDxM+FWPyKD4hAQXkJJ6u
YGPCSR9FxyMDE5D6F8Hgjr1M2NDir9Pv2wno11dB6U0BJuyVYOAYw5KAZkoE
XVVOMmENfTmr1r54tPeH4J5hIyZMSZk6XOcbh+SW2xeNbzPhOfnNhgcmcUiX
z6/rrykTFhe6EqAAcSjGajK+y5wJSzwoyDBaj0UHmL9INNgyYfY9hbmp1rHo
0NULV3KeMWFnh/W3B+7EINmWe888M5nw8Xp7hzP3o9D1dW7LrSwm/GfzROmy
ahRyEGhUc/7MhDP/6r7oOBaF8h9JcT7OZ8KvKlZINIuRSIFtPeleBROOOb5g
dcAtEp3Xfl6u3smE/c61qrBHvUbaHRmbvNtMOGDk+KX20QjknvqA3ERgxqRT
rHZfGyLQeyfxNW8qZvwmuu1+2acItMmXsThGx4y/9U9tKDlGoBSz9Ikv7Mz4
5feyvTSkCERe/dCteoQZa79qF9I6FY4S96d+cdVhxoE1flRVH8JQ45RZjuQN
ZtzxVuIe1cswtFpyKGtQjxnPv838ZuIchlRNU9Iv3WLGrjUZgZ5XwtBK+rtE
DktmfFWAS0hmNhRdPpscmuHBjK3NhquuK4SihVv/PehJY8ai+rcfDHUHo+VI
GtnbH5mx0Uxum9XnYLTWZLH17xMzznt8HR0OCUY7IB0y+4UZOzyqOH7ofDBi
5K/8RFnKjI/dvC6pnhOERPqHF0TbmDFj2oopR2Qg0jUWdbLfYMbBg8e5Vj0D
kH5UkCJ5ixlXPMreXjIOQEbNc/QeBBb8iouDnUcxAN3FBTH+NCw4T3nvSi9F
ALLlv1wUy8KCxzsmpbCvPwrqv79TLsSC/x0ZSTob7odKjT/5Mquy4LfltCK/
v/uiwqYHV3rVWTBj7YaZToYvykNirJmaLPgUodd8PdgXZfC+i1O7wYKT3uLi
Ck1fFNMd8znIhAVHiz2TUv3jg+w1ng0wOLHgpenTIbQrT9FRbHiWNoUFhzhr
N8Vc8kaHPu2n6nrPgjkMZQ7vHPNGgge661LSWbD98TkDP05vtG9TS0c5mwWr
xapHUw55IWL+pfu+RSx4wUV9LN7DCw1IykRTtbFgqTX56+dLPVFP/LxRWwcL
Fr7Y+rop1RN1M30STupmwReY07NdQj3Rz8kjWUq9uz5/NEpkTTxRUerBWq9x
FkyT0HlanNYT5XP9DdKcYsE1Xw6n2A54oM++MVoCs7s+Nr35DV88UJopZ2/Z
Eguu15AUkTfwQO9aW5NCV1nwxBOOZlUpD5SgGGphTGbBx15+33lD7YHistQk
pbZ297cdNhL/5Y4iD5KWd3ZY8Ek+l1erH93R/wA5j21v
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 4}, {0., 0.1534560083456049}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.690772993871728*^9, 3.69077301044521*^9}}],
Cell[BoxData["\<\"From the book we have that If \[Lambda] is an eigenvalue of \
the matrix A and if v is an accompanying eigenvector, then one solution of \
the differential equation x = Ax is x(t) = e \[Lambda]t v. Thus we can make a \
plot with the smallest eigenvalue and eigenvector to get a distrobution of \
our solutions. Hence, we can say that asympotic behavior of the solutions \
approaches 0\"\>"], "Print",
CellChangeTimes->{{3.690772993871728*^9, 3.6907730104467125`*^9}}]
}, Open ]]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.690772983754672*^9, 3.690772984970542*^9}},
CellID->20]
},
WindowSize->{775, 872},
WindowMargins->{{564, Automatic}, {Automatic, 54}},
FrontEndVersion->"10.2 for Microsoft Windows (64-bit) (July 7, 2015)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 2247, 65, 492, "Input",
CellID->1],
Cell[CellGroupData[{
Cell[2852, 91, 320, 6, 23, "Print"],
Cell[3175, 99, 12062, 209, 226, "Print"],
Cell[15240, 310, 486, 6, 81, "Print"]
}, Open ]]
}, Open ]],
Cell[15753, 320, 105, 2, 31, InheritFromParent,
CellID->20]
}
]
*)
(* End of internal cache information *)