-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhomework1.nb
2572 lines (2473 loc) · 120 KB
/
homework1.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 122179, 2563]
NotebookOptionsPosition[ 118342, 2453]
NotebookOutlinePosition[ 118684, 2468]
CellTagsIndexPosition[ 118641, 2465]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"Bisection", " ", "Method"}], " ", "*)"}]}]], "Input",
CellChangeTimes->{{3.6826054993352714`*^9, 3.6826055153649464`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"f", "[", "x_", "]"}], " ", "=", " ",
RowBox[{
RowBox[{"10",
RowBox[{"(",
RowBox[{"Tan", "[", "x", "]"}], ")"}]}], " ", "-", "x"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"f", "[", "x", "]"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ",
RowBox[{"-", "2"}], ",", " ", "10"}], "}"}]}], "]"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"a", " ", "=", " ", "2.26818707"}], ";", " ",
RowBox[{"b", " ", "=", " ", "7.1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"fa", " ", "=", " ",
RowBox[{"f", "[", "a", "]"}]}], ";", " ",
RowBox[{"fb", " ", "=", " ",
RowBox[{"f", "[", "b", "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"eps", " ", "=", " ", ".000001"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"error", " ", "=", " ",
RowBox[{
RowBox[{"(",
RowBox[{"b", "-", "a"}], ")"}], "/", "2."}]}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{"While", "[", " ",
RowBox[{
RowBox[{
RowBox[{"Abs", "[", "error", "]"}], ">", "eps"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"c", " ", "=", " ",
RowBox[{"a", "+", "error"}]}], ";", "\[IndentingNewLine]",
RowBox[{"fc", " ", "=", " ",
RowBox[{"f", "[", "c", "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{
"c", ",", " ", "\"\< \>\"", ",", "fc", ",", "\"\< \>\"", ",",
"error"}], "]"}], ";", "\[IndentingNewLine]",
RowBox[{"error", " ", "=", " ",
RowBox[{"error", "/", "2"}]}], ";", "\[IndentingNewLine]",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"fa", " ", "fb"}], ">", " ", "0"}], ",", " ",
RowBox[{
RowBox[{"a", " ", "=", " ", "c"}], ";", " ",
RowBox[{"fa", " ", "=", " ", "fb"}]}], ",", " ",
RowBox[{
RowBox[{"b", " ", "=", "c"}], ";", " ",
RowBox[{"fb", " ", "=", " ", "fc"}]}]}], "]"}]}]}], "]"}]}], "Input",
CellChangeTimes->{{3.6826052017630606`*^9, 3.6826054695288563`*^9}, {
3.6826055418877935`*^9, 3.6826055646718655`*^9}, {3.682605637904645*^9,
3.682605692213776*^9}, {3.682605725888626*^9, 3.6826059166318913`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwBsQJO/SFib1JlAgAAACoAAAACAAAAir1Cvv///7+Co7CitNk3QPw+dpjs
8P+/AwAxF5wPOEBvwKly2eH/v1ppdHNpRjhAVMMQJ7PD/7+7zl92zrY4QB7J
3o9mh/+/T68OVHqjOUCQShJqU3j/v33gUlhI4TlAA8xFREBp/7/4I5KdMyA6
QOjOrPgZS/+/kMawtoKhOkCz1HphzQ7/v6fjyPL6sjtAJlauO7r//r8mb3Le
qPo7QJjX4RWn8P6/4LQWm75DPEB+2kjKgNL+v4QjC0tO2jxASOAWMzSW/r+E
U17tUho+QLphSg0hh/6/oASi9JBuPkAt433nDXj+v9WPpLOdxD5AEubkm+dZ
/r8v708UYnY/QNzrsgSbHf6/WohKgDt5QEBObebehw7+v/2BKZKDq0BAwe4Z
uXT//b+emNEM/N5AQKbxgG1O4f2/FsiMlatJQUBw907WAaX9v2JCIYdjL0JA
4niCsO6V/b9to7EfimxCQFX6tYrbhv2/dATca0yrQkA6/Rw/tWj9vyXelDDo
LUNABAPrp2gs/b+FnJJxkElEQHaEHoJVHf2/azLYRaOVREDpBVJcQg79v3nH
DAL240RAzgi5EBzw/L9eSi0uxodFQECK7OoI4fy/P5UyUH3dRUCzCyDF9dH8
vwV2FwPoNUZAmA6Hec+z/L8uSjsLYe9GQAqQulO8pPy/BX43lrlQR0B9Ee4t
qZX8v/Ri2oFatUdAYhRV4oJ3/L/K1MCgJ4lIQC0aI0s2O/y/YhSzmYtgSkBm
nwSJ3ir8v5efNRLK7EpAoCTmxoYa/L83u/AfAn9LQBIvqULX+fu/kixTKPu2
TEBLtIqAf+n7v8plf+ShXU1AhDlsvifZ+7/mu67yDwxOQPZDLzp4uPu/BRvT
jI+CT0DvofLyF7j7v9wBSNQxh09AQ/5dhQ==
"]], LineBox[CompressedData["
1:eJwVlGc4FuoDh41DaFll02u+2XvzPOb7GilyjCiOEJKUiJNVSAqRInE6doUi
bcXzoKSSZEVGdrZ3l/0//w+/6/5yf7uv60fwO+0SwMHGxob/2/9Zff9QcOMq
C8m3HDWJlHLBvkJChUIMFgpZNeDsHHPGKXri4l8nWWiAgzSg5O+MK90JtzN7
WcjBaVvV+sIhzCjQuMn7goWCPnj0aPEfwmKN+oLv77HQa40S3nOHD2LzUbOs
5NssRH0mZSCa5YSvyDumb8WwUNj+x1WpcgfwQ9vDfA0hLPQ5mpNHLcYRdwUd
ufK3FwvlrCSYi/Q5YImHQclMUxaSnWbzXCq1x/DLaY4naiw0tk8wYYewPfan
RiWGS7PQQ6Vctc40O/xILyV2fouJzgsuCG0mk3G3e/rqfQoTmRzNquriJePf
MTnRgWNMpH9xf8i+HBK2bCw+N9bMROZzP47q1tniE6P3aXefMNEv1bjiayRb
nM5RG+5dxkTTxJTwuFEb3GfbGPothYlIjdnfYyRtcMiX7/6fyUzUYJ95+9xL
K3ydOjZ+1YiJ+oLLbikGWuGnQrO+ZGUmijj2vJu81wpvuv/ybtnORPyrV1vD
4yzxjVGhP191MFD/meQP5f4W+AWHRHcUYqCt5Ds+8nIWeEhe1lm3loGmNM07
vCcgVgzWPFCTzUCJm/Vzz4Igrqc62pS7MtCuQbPE+3wABxPv+dfYMFA8TebK
cLE5FvVhT36lz0D2SSHsl0zMcVT7s+bPogwEknkDmiPNsPY9acgaoqPmd23V
LE5TPDYc7cPWQUd96wuEyGoTnCXcHc+H6MgmlL2l3c0EL11MbZAupiPEWany
qdYYV3pTjEkBdCSp1hGZGG2EPXPsjzi70ZG4iooeUDfCPB/LYrxIdHTVqzf6
1JQhDjTwfHl6Px0Vtnw9tOhuiGUFm/VuL9LQvom2ID9HA1zwPkdzNpKG/Ex+
+KSd1MP2m4sH6YE01H/xVjVFRw+v6pJPb7jTkMy7tWOWG7rYo2T9oYAxDWV2
dwtn3NDFwnEBKsabVLTzWFaO3HsdnK5toHjtMhUpuXCocrpqY5PgbJtb56ko
Y5m3oISojef+nff/N4iKnk/lnx3d0MLknUWlT+yp//Uxl9pfqYX/mOEhDO2i
Im9O7zNZvFo49p/vEmp5FMQR/Uh5f7MGpn0bv0u7TEEe0tuDfKM0cJDgPOFl
FAWRyCIpd1U08OHUNSUrNwoad318WjRfHSufkdT13ENBGdapMScT1HBt2pvb
fErLyGyg3sg+UgUXbrbfvcW9jEqE1KszDFRwasRw2b7pJVRHOViQvqqMjx3d
rNUvX0ILu8O0Hl1Sxju04Ac/uSWUd6NKX7pgPz7R37JSL7OIVMje//6cVcIu
B3q2bLYWUF5e4Ha350rYvHmS6+vIAnpYtn7ZKUkJC1dzCf78ZwFxXTne3C2t
hJsTSMpCkgvIktOGZ9FLEUsrfTpyUnQeyf/eORWxII/7IrteSwjMou9F24bH
PGVxvry65VfaDFKMicrS1ZfF3t1pbZd7ZpDUyXiXz4KyeFzTopeaN4OMve9R
29sJeGm+Zum99AxKzhVVnrUiYC6/DMI51Z/I4a/KbW1m+7CuEzm1nTSF/BZL
UilPJfGv9dKdl/ZPIbo+Dmq6IInrq7ZyDLZPobmwrcF5S0kMeV8UlXRMomd2
F16TuySww1uF+ug/J5FA2g8tDqY49jPmXJQ/PoEYZ4ivE+3EcLZio0tc/BgS
f16R/11pLx4fiix6cHQMpZcX8gzT92DtHLWlXtMxtGrM8Uwe78FdW4Vp6muj
6G5lwK8Ezz1YeOAC/nF+FI1M/DB0vC6MVUUivJPHRxCKFPsYxS2E9ceChXa1
fUeDfly1iVL82CHS/SIhpwul3laKNr3BhbebGl06UFP63/+pGLgQ+5B4pAdL
Qv4DqPgFcp88XgdMqlVuYsUHcF1zJHzNfgN0hmnoTxE/glGvutS0yQ1wOYg7
6pHaJ2Dm/KooXnQLUL2eMqHBZ8A188F2vYkN+hOurGqXdwK2NeBtr8cJTXgm
V9xf9gC1d3fjNCx44P3WAburKz1Ak80yoCeHB+5N+ZL/xrgXKJ8HpJfTPJDC
/tqI0NALlmtFVmEGL6xYy46Za+oDpfx/l58d5oOCy2Al9lM/6A//V9z62k44
21vwu3hkCDSAe4UuNwTg/X1rpASJYdAz/utbdoMADDx5JM/bYxjkHkqcW58R
gJNsYvoiXcNAtYh70gMKwhGV3Ij0dyNAT9mpzpAqCGch+byJ2yjoOPFJTNZb
GA7nWtIUzMaBp7+lrLeXCDQ1peXf9BoHj7IsGz0zRGDhWLEF59/jIJR4vSgf
icAjquzZo8/HQXCSWu2EvCj81oQ0CjQnQNjSc+Yrmij8umB6il9+EtSHDK9b
FIrDd5YGM6t800CvTe6HjLo05EfwQCdxGuhnsd8iBktDbxP7unLbabBDbP3B
jTJpSNM5Gnvo0jRg89wwz5KUgdIKSfwVK9OA1z7/RRXPPhi97Yuh88xP8PY6
1eDRNgJsSer/R5F7BjSwwoxyiAS4i22cY11uBuQF0H8+tSPAst+M9gqfGXCq
4e+Wx+kE+HVW/K/1vhkgLrA7r3KPLFRuD0y7924W2Frmdp7WlYOR5PCl2IlZ
4AuGPbI85SB+G3PYhX0O9Cku+m/Ey0G3hnSpDdM5IL3zXWXTRzmY9KjuscvT
ORD1KrVYOFAeDmVtDmyUzAOnY+oB3A8VYOafucquiYsg+hj72erLROj40aqt
rmgR1Mel5Li/IUI+QA0QaFoEAne8SPk0IkwhOhZ3sC+BLJk3E/O++2HsGruo
XdIS4N528LysjTIMKT7FZX55GSxSQp0b1FUhca9EaWHFMhh1P+zseloVTl1t
g2uty2CyrSX2Va0q1KwXMB/ipABL5aq6LT01WF0aGpNvTQH9FQW86/bqsDRK
liLUSgGjAXrsuc6akENrxdyqjwJuHrq5/UKMJvSd/5JxdpoCCmLJCrRiTSjt
G6fylZsKvDtfO5QxNOEdu/7ATBIVdIjjlfhiLbjCWfOswZ0KjIUfBBzp0IIe
jSl/LJ6ggtB9bmHTa1pwr45OicMVKoj7SeKX9dSG2ZKZwzwfqMAuqE2vWlIH
Uvr8VQ0HqGDs+BOjrIM60Cnb5MKJWSqIzw6NdkzSgTu4Z0VbeWmAN+zaiP+i
DryybOWaZE8D4quZ31radWFC88rHjU80kK/Sfj2hUR/SflQOiAzSAHfkxuvM
DX0YuOE1ozVHA55P5K+9NTOAjoaNXIE8dCC/29W9tckAij66BDus6UC7J7RX
YcAQXvukc3DmMB1crzY2PSlrBDdnJo9yHP/PL/rtpHDKCE7JkS7oX6SDcymd
JxW3GcO6/O3P7zbQwej4mYUmJxOo8OLN25ftdJCz2Ce5u9wE3u451d01SAdh
s9ViZhsmMH53J4V7lQ4Mo1oz456YQoeUmyqn9RkgU5F09JqROWwssTFOs2EA
eamnx3qLzKE2ZpFLXRkgI5d46g4fgKJrHoHfzjIAixLRwJwCcDJcqhjUMMAD
3aDg0B8Qumd21Hg2MsDV993jp6Qt4MeqhMaIzwywM+xZp7SPBaydHhu8N88A
/qyRW9+mLKDcHzlzTasM4J6QYcutaglzCdYrg7xM0OuQaK19zhLGeVfs5Scy
QYb48+EhPitIiXFXUDZgAt/ZCbN0Tyvon8eja23LBFfWiivvVFpB+64Q52h/
JnCgVeeRXK3hXrJG+mgRE/hLNeWe/WAD0wJG76zWMEHw2UFCsbotXL+U/UAY
McFqXOMuxzxbONFAbyUPM4H+wD2f/ggSdBss6/VbYILjv8ud5GZI8OPvPydj
15hAcMdjn0ZfMqzVecn+WIwFHGef1E372EE552D+T0QWYOczK2X/aQdzw8Rl
pgxYQC1mRSItwh7GPog1FXNjAeMONQ2zuw5wuVXNQSeABRZ2RsSrmjlCv8kR
zwPnWKDMtTxk94QjtJOxOH/xBgvIyBgoFdo4QZahtexoCQvsCc83qRE6CGX1
J8JvV7HAEDu5Ryv1IPwfiHMI4w==
"]], LineBox[CompressedData["
1:eJwVVnk01PsbnmFGaob5zlxL9tAQMoxt7N/XOiYS3S43RFRSSRtSIUtCqcul
cm1X2i3llmWkmk+K6BaShFQXV4s1umkyi5/fH+95/njOc87znPOe5zy6Efs2
7pAhEAiCpfs/+mj/qZMSLsJXP9riEKe1Ecm0c6tJe0T4ja2C2B9d/mj18+/1
KsdEeCKvIupCoD/i9lwTrDktwpknKsMOjvmhnKFlL32qRLh9p7MsmeGHbg43
DoU2i3DtMe2f+8M2oBcfdn7Y/7cIryGPMwcu+yKV2Sc/CiZE+L7+EPl57npk
O39Y9ppIhH+CjPn5yz4oWGSo0EQR4+0hdXqz8j6onJy16q2JGC/WGz2n8u86
1LLC1njGQYzPvPo+dzRoHRqjfbIk+ojxPTS7r159PGSs7sVlRovxnMsbM/8d
8kJ3WPIxe6vF+BnaeO01bS7qs+QfPn5PjLPTkln1fE8ktI1KzXsmxvuox7ut
AzyRo1t7Qf2kGLdVFJOGizxQqFdC2ROxGPfnyUrvunig1PVrrg9QJfiq736H
IifcUVtgVrNkrQRXnLUMqvJ0R59CbFtpThJ85J3DHTmhG6JEfOrUXS/BD7BY
8o1Vbsgv2mvEY68Er3Ud+qdGzQ0NpsgvP1sjwUM1fvuyU8EViTP4jPL7EpyU
d/qPnk4XpHM6SvP2cwn+uscufjTPBW0/127WNyXBN4Pz/npNFzR1IytAmyXF
s3cc1ktwA4Tdst1q7izFfeLOrN+DAbKo+7TL1VeKB/PejBjex1H8A6+kyBgp
fgU9Y98ROyPCS/nLN29K8YxOb4LjOSdk45C/t+q+FI91zGRPejihvZe0ONef
SXG1q+wMS6EjGjxk8fTiuBRPbyxVCAh3RPVKIV8KDBbxScGumUp3BzSZ+KEp
z3oRrykWXu4mOCC9sf3pZ90XcV7zB67NA3uUW5+hkhWxiB8g7/MrdbRHuwNu
OR4rW8S9ffwTvnjaoYsP7OQSahbxdSa/Y0ZUO9Rv8Lgr9t4iPjf2Ije8xxZ5
fO+PiBlcxL80e8Y3htsizCf1sTmFADylbbe5pzlofLJyXJ9LgH/It+IMyDZI
Tnf/hgpfAnC22FldeW2NdH+xrlsVQAAGXJXtqrRGv94XJGntIMDqbXRM6Wdr
1HqmF1NNJwDrxwY5caUVKmdJbVYICJDgFvAoOM4SNUc8Ks5qI0BH1WnOhJ8l
6jufRVjWSYCGNoWkubWWSGGR8VT2LQECippLQj9YoKNdhlskCwQo2eh8b0+o
Bfplv3/6FxsiCJJb7Y+Hs1FOBW5Dx4kw/3rAQQps9LjX9DObS4SGy7lxo6vY
yMpuxYZDgUQI2yLr3z9sjpRkHqnPHybCQq1Dn1WUOerNt7ot4hNhtVHRvV9W
mCFqm94OzYdE6KLvrQnrZSF3IbbSqYMIyvJ136VlLFQXMpWUPECEE9UepXPW
LFTAvMojLiz5WXNkZPtuU7SpUXVYzkEGmLcOzAVPmKCcz+QCQzcZyFn94Ube
fRP0WOM/Ty9vGbg0sTmek2uCrFK6q7ODZUCjcqb+bxsTpMTLTqAmyoDpSYuP
o1nGqHdwgca4LwN2j60GgnAjtEn61lkLl4WaxNKTXhMGSCWiyf+OpyxYkdxz
258aoP7Wgu08X1mYTPt7WXqlAQo5430qbossVAVpLV7abYB2aDa9en5MFq5R
0LKUKSaKty+ITubLwrsu6uSCeDUqjF9X9J5Ngukp3YHtzvooaJBZE2dHgiha
X1q/vj7SdCYiigsJzIuzsYPL9Zf6hT/G8SOBDaNxWOmVHrpRwGTnxpAAaOWy
1Bg9dPc2oR2qSLBQzaAEX9VFQ9MN3y6uJoPBE73mctNVqNmvOWBwLRmkQc/x
lcqrUNFtQSPDmgy7qFHBQT90UGB8+5F0DzL4xoF3cKEO6pEMSLZHkqGF9eaj
qF8btVMl5DXXyfDvujhb2nYtVGfspnLTRA46x6rfVJeoozORXTZ3LZYBMfT7
Q9phZSTxyVjvzFkO4WPBJWUR8ujbucwwdTUKxKKYt7VrJgU2pUItd10K1Jll
D81OjQviL+8a2mtEgcej0k9Jtz8LhLe9Nz+0owAo9ufusvsoWOii/RwVRIF2
3fiDLOcRgXR5oWdDMQWE5X3CCugWyCVfN92oTYX2N1OWNtcGcM8MtcljBlRY
KTyX5PrrEJ6Zc6ryCosKUdbKF/+ivMfli6MNfzgv8a7esdOOI/gKvrlueRgV
ajd/VrO5+xFXnOMrTZdT4Ve+lXHz0VlcNbJDlK2vABvVs1umeEu9WWaobmSi
AP1u+UOmRCle/TrDtt1CAbxiQzl4kxR35bnGybkqgPp9d+8vygSIXts8nbZV
AdJazuo1nCFCy1z18LFSBUjkUJI080kQfTz3yV5VRcCk1Zw6AgU4/Okxqo4i
XLSglERHU0Bm1odUbaAIV+vK0x71U+BCxHKXcWtFOIZNrP/lDhVaPNLuRm5S
hJQJ8ZzHfkVQpcbWhOUpwnwD+WotmQ4thYH5/hQaOPFeJ4dPKoEXlxr+lEGD
tOCuTbipMjz/hlhu6jSQVu9k5ccoQ/9G46dWRjQIOSQqvzSnDDNUCWEllwZC
SbdWIUEVNFMrYt6l0aBQCVu7z1oNKswCHQNP0SA11k05M1kNDN9RVnTn0SAx
mVFs2a4GFg5xVx6W0yBzUhT98xZ14H3jDl1+sKTP32s4c1YD4ndN8fYs0ID3
tZbRRtcGKeUFZY6AgfPuMvDZoQ2wrergTRIGbQKmX26TNrTRt4IhFQO/Nx3e
odt1oCem481KDQzSb7zaXR++Cj6tKWGIbTG4fvAgiflKF0xS4o/wHTFQOs+/
VE7Wg5jXfv/EAgaCqcD2CzZ68DWDfHOKi4F6IbIlFumBdCSG9z4AAwpf58/F
SH1QLnVJaYnF4KyIndGlwYTIQ+aK3QkYTD08oCYXxAQ+T6fkbSIGST/5REoL
mRA0L24UnsDgR+55Y3c1AyjbwJ9hncNghrCtrEjfENbImIUV12PQ8Ma2/cw2
IzjSrzV1vQmD/isdUYRaI3h6k3qs4T4GHGfFsnSJEUQHj59/0YpBxH+Vn3uL
jeGvuiudy/owgNFgUugHE7DfqekcO49Ba4mielkTC047UZ6lLizl0XbKPa5u
BkM/LWz+TYqBe/fC7JdEM0hGr+Mq5egQkBNYGaBvDo/U8mv+UaHDHoszAdu+
m4PSl1SHaXU6/PVp/NotFhsi2/Z3iLTp4NX4YXYukg3yh3zHVAzp0KpjZnZ0
kA0+z5ZrrefQQa39zvmQTgsorRBWBjnQYbFibrO5oiVMJ3y0jcKX/vCBp9Bu
gyXkMls3pXPpUAI6IUqvLOFVckpOUyAdIjU5X2VmrSCU/V3ETKCD+miKq10s
B2LLh+ymj9GharncrSdtHDhFaznccJwO7mldLqoattA4lfPVM5MO2MSwpU2H
LWCVehM7z9OhzuvNOhcnezBQkzcyL6JDmWPJQMWf9uCYNRUpLKXD3Rc7PvuT
HGBXJH8k6wodYi84p870OkCLnu/gjbolvzKb1rSfc4L+PMuVB/l0COWHkMwU
nGGaoBZgf48OJ26pPq7NdAaN96Mvnj6iwx8TFydPnsQhtvhIx0QPHUJergy4
+xrg1IqwZXV9dFjoty/q0nWB8iPuHomDdKiWUFoVY1zgWSDtIXVkiT8wc2C/
giswla7wTWfp8PVSKndstxs4pp+a//YfHXxuzBjv6HCDjXP7rB4I6XDUNf3k
chN3SO62r/UlLK0FJ5POnUJ3KMBXTauQGOB3odglabsHVN4kr32/jAGS+N9b
Y3o9oC+n+9o+GgO2EINEj5AnTIrqxzg/MeDxeJDLRScuyOwp1ieoMmAxm5Hv
K+CCGS/yz1xtBoBZwCn3Hi/IIovP/2XKgK1hWj8cwRvKYod7j7AZcKJq0U1j
yhvqRtsYrtYMOOWIN4xc9IHhh3lnexwZIM2mPz/M9AWh+eFnRUvr5nlhqtpv
33zh48uqER03BgwRvXrZmRvgf1irWvA=
"]], LineBox[CompressedData["
1:eJwVlWk41P0XxocsYw2zYGZ+P0tIyL4MQ3OMfV+SECWVsjwRJQkhSkhTUSoR
lUqFkGSbr6dsJUkkUihPyVK0CG3/+b8417nu63Od+8V9vzgqIVHeOwQJBEIL
f/6/B2NFlCejSKD2IIi1D/NG0ik9NbnRJAibMPx+XswbydyIncvbSwLfofMn
Ywu8kFyfwtoL8STI/mHY+FvHC1HVtpVdSyFBq9DBS6k7PJGCG/Hd7XQSXBHJ
5rYSPREt7rZSbSYJwp9Ib00I9kB4548CxCVB/Ljvi9MUd6Q8XzjQnkeCByeW
1e4luCFVGkfuSQEJ2iTW7fF674o0InOyhy6RgEPIIAU8dUG6MirJX6r4fpGi
HrtGnZC+eXvDYi0JyHtvpd/e7YQMQyJ+/KknwanEmcEFASdkWns3WqKVBIq6
jVt5Ro6I+TrgtmwbCQT1Vh4ZeeaALEQIU/JdJHjySljEPNYBrfNz3qb2jATV
P3XnpXj2CFI/F2sNkKD9wfADVpg94pTnjegPkUDVucyPRLVH9r/ebLAaJ4Hb
8NRHzn475HEp1tF3ngTTf3nKRT62yLtLISPwOwl0v7EshWVtkc+X5taQJb4f
936Aw1Mb5GdLZEUJkMEnr0dupZcNCp4sXJspSwbb5hO5bTs5KESWE55LIYNZ
x1wWxYCDtlt8KMtTJENT1um85p/WaFeOgXKJCp9/9lN9l2eNovXb5RoMyPDQ
ROcMZwBQjH+EBzIhQ411+nHJ64D2psnktJuT4dFp56LBg4Di+wOEn1uTISqR
luOuASgl/vOPaS8ynFgMS2yTYCMuUniNxZBhmReFZTy3RBvTarve7CNDskhg
9cAZS4TbetYVHyDDrw8ee402WaJbHUdPqKSSYXXI0pOl9yzU1bNgrc7l3ytp
NS2IsZDg6/4ynQoyBIxs9ciJN0ddRdGnZ++Q4Rlon+10MkfcYMmUirtkKDi8
WHqPbo7wCRt//WYyVOxod7vYykQW09USxt1kKM2mzChQmCh2iRvNmiLDR9FY
XsugKbJo1An6NUuGOnTo3O5qUySY1OnUPE8GV7Fi4oXjpohLIKxiL/HzMt4M
W+xM0S3RqAEOkQJF0zxjzwYTNEFxs3DWoMDk4NG68XvG6ObgpIaEFgUIwVfI
dueMUcy5dFL3WgooJ3TlCx40RgSsacbNhAKdfzcbZbCNEaamXexlS4FXzzdl
Huw2Qr6GYkL+IRQ4MuK6fvybIdKJvS8fEUoBqS7hfJEhQyRQG6adFE4B3Yud
jQnNhuiWySPvkhgKJCYr9TkdNUSC5tklH9MoUD288HgTbohus6XYCZcpULFp
529dfwOUltLsnXONApqJ216XWhsgv9Z/QotuUmCmOOiWl5YBErTpOf5vDQXc
f4+LBf7SR372J0bEH1LA2JVXRLysj4TcZBMuTFAg0mEWzX/VQ8PHW4/fnqTA
QwXr7/6P9VBlz54S3gwFRM5+NmBc1kMBnn2d775RgCJSKnBjPZ+vPy2vI0yF
OaXydc31uigggHK3SZ0K5XfFN1adXIvu7FScex1KBfuMN+HzcdrI1RrVlIdT
Qa+u48sWf230nrZz//7dVNCVlDrzh6WNaD21f2TiqOB4M/Ncl4A2Sjf2lLLN
oEJ/8iaZjBNayE/gqFb5ZSo0Wd3LkKpZgwgXvm2PG6OCZ0bEuWqqJvLseTok
HSAPvnNhn2yZ6qjzrcq+ziB50NmXKeO+Sh3Bj1iZtK3y8OatrE2EtDrSV1Zw
+L5LHiIm9z4fm1BDMjHBta/2y8PCiFbxnVNqqJcyn3s9Xx4kR6d/1cyvQh5B
cracZ/IQWVn87WajKnKf8anY56gAhMAthJS9ymj8yZKDhosidBjNzbMr5VH9
mO1omiUNUgQ9tmf3SSG5nLr4c0ADUdm0L65pUijSTFOuypYGn98pJg0bSCGl
XAm71640GJZLf7+BK4mOsPrKzYJooDdlZlzrLIHWn9kSN5NEg5IiQZJ5LRF9
ckmQ8uXRILLPRYO5fgVy/DFdFvmABsr0WZucZUFUWhoEhztocD7fvDmrRBBt
WILYqqc0qHU435H6SQA1lYkOiY/RoLDkco5xOgEdE8i/wiPQAbYZdwmxfvLU
7lWy1nDooDnbrb5iYZZn81M+Y9mODlUXBcTvxc/wQtgpPY+d6MBV0Rs6uzTF
K+7w3Lrbiw6Tk8ODHd8/8Ggv54/UBNMBDdpQDAfHeTJLRn1Wh+gwltnTUTn+
kPfLon6XdxMdek+vYQ23/MemH1KuXoX4PGjgEJb+gW3xIPPntwd0eOmxccNq
14/s/S7+uWcf02GXbZv/3YkZ9pdNyzUjw3yOWQmFMb6wJxMt/4Yu8fkaq6Y1
jUvs/haUf9CUASn1gcrXNYSh16q/ztyCAeS6eIVPVcLQ3fRh8IcVAzSzx+LY
liLQ1iBN22vHgPbfwnJkX1GoqwssivRhAPdjUsbCGTEoqFgsC4phQPzxrEPR
XtKQt1aykx7HgBnn+f8iPkkD95bSx6EDDAic5FxryFkJx8rttX1TGaC9IbWm
JlQGEsryKt25DPjUW0XsrpSFwCL9enYFA/oNqS22oWTww2yHft9hgOQpR837
iP8XCjcuN95lALG8+ACRQQG388mWzGYG3GgUPGw/QIF1Z7qRfjcD4PCjsze9
5UE5d1eXyhRfe/jzeIk0YEglTo3O8vVq7qWu9zRQyDkhUTTPgHA//ftf+T3J
ZtW50ZYYYPSwv6BZmwGCR4T65IgYMKeLDvw7i8FE0qXhFRoYhHBGo/55qQyf
DnaqkrQwWDxTMMPCVGDpwFy4qi4GkqXjDZ9DVEA6Dn6CKQZPVl5xo8+rAHP3
GD3ZHoMsJ4tCquIq4EQStx93xmBUr1L88o5V4Bauf6vQHYN6NfleqFkFIaEp
lo2+GBw221/U5aUGxzcrBy2GYiCScIDeXagOBYGOV0UjMDj19uDwxS/qUBoQ
PUuNwuCe1v7n9U4aUO+Lkkz2Y+Duu7F96qcGvHUPLoo5igF9hYaa/h5NMGVf
Gp25hoFTP3PFs2vaAFadq3/dxKBlelL0ElUHXFhzURJVGOieLRzafFQHgs2A
oFWPQTD3Q/W73WshS29MeWcnBqz/tEwrN+rx+yeGxXVj8C39anDRoB4Ua+vf
yejFoC5meea3jj7Urk6xvvISg3yXNRUaNfowqqQcMj6JweTjg+sfPjWAKcyx
fG4GA7W/7r0naYbwjR795e8cBuTv76mzoYYgroDS8CUMcu2UTqYKGYGxTPDl
TWI4NNfuWa7xMYZ10pnT4VI4MP1uEJNvG4OTZJVRgiwO6prcLg+iCWwmEh4W
KOJQR5gr3fDQBDIJlyYG1uCQVOLarutnBn5nW0aK1+IQ3JKrzWwyg9W6r/vD
DHDYm6v9p0iVCe2baG2/mTgkl3+ljS4wQfhe3lV1RxzM5jdvf8uzgH63mouf
XXBgj1U9PmbOgisTz/Lve+BwwWctYXsdC2zlVh5x24jDBk6hLrPBEtL+ORa6
LxSHkJgNV1M/rQNvoeub2eE4CFGuNb7IYIPKhXZfsd04UPt98vtkAFDnCoeL
+3DweWoZ1loDwN2iyt55AAf3rAPbBMWsIXgBzAyScLgrLiv+Ndga/q5KXt2W
joO3T+LhCEUO9DQUKp3IxKHiiqmSVQIHirwa5f1zcBC1fRLo/YYD6w4tis6e
xuGtutLrxSobSByOmSRfxsF3tMLhUYYduO45OfamDIes1s9cSxF7oBOrXl4v
xyH1JzuhLtseGkxmOy2rcZAXD1/+U+YAWd0SrSJ1OESrJWkkWTlCwDat+733
+X2dic7eNuwIS9ydN7a38vMPiVVUXeMMnauPlOi24dDG1KLOvXKGgpYr5xY7
cbB74eJNPusCzJnxYzm9OAyZx/8a0HQD4mFCmm8/Drx19eEvCO4wqKiUoPwS
h6sxdmY/3rkDU2S9yNVhHEYEHPsNjnrA/wAkYzcP
"]], LineBox[CompressedData["
1:eJwVU3k41HsXt4wrGkuXvEbh+5tfwhTZBllyzGS9ZUvTlFJXqIYQ8try6m2T
txSlPVIJ3SLqIqFTTfeRaFFNyVbRVJJ9vSp33j/Oc/44z2c5n/McKiQ6IExB
Tk5up6z+38/M72zUYBBY8GCD4079ANwQ2JfmpETA/2BCekiXPzqKDPPWqBB4
zWr9w0bHHzlj1WZhswkslpjEPKj2Q1Z6QF2sGgEvlS/bL2/0w4ncfe2H5xCw
K3O5FRHri4H1o6+ztQgMWJl7Hmr1wQrp5he5cwn4WdyPUvLwwSg7XuN5FgEF
YxxLsl6JTRvLHxbMI5A9pdAmLl+BphnkXqG+bL6xoUuJuwJ73vysuk4R6GY8
HPbx+g158lE3y2kCGQIuX9LqjRdMO0r/NCLg+D3C2z/KG4OS7xTWmRJ4MXv3
Vr+LXtgyL/FYsyWBfobytVhLT7RY/inrubVsv6og+eR2D8yKFGS+4hLYZLYy
nsr0QK86m90dS2V+Q97PlfS5IwYPRX1zleWVOk/Y2eSGBgc2iYb4BDSnXcVd
B90wtexp2Jgbga7OZqNKTze0kytd/8OLgHFa/q7cx8uxtEDkrRZAoL5BW+jS
w0dmY6vbnEAC3ow38+RL+Sga9nSdKyDwWbOmTyeJj0Z8Y3v9dQQutAsamFp8
PNfTbWQWQsD0UmhqTyAP/2auoixDCVRHSCcYJjwUcu/P54YTKJAEPqa/u6LW
/gtaziIC++737XAocsVM4w3yK2MJpJGhl0PKrvjZt+m7XzyBHAHD1uQDoHui
42RgAoHa6Pw6qg5Q/hFrYH2y7L7RDnz3nYCJIkl75H8JHOmceR3f5oJh132r
D+XI/C2ffXX5uDMuZNfMjjpOoPDbj6sa951RemLBRt8TBFIux+8ty3LG8PQp
pV/PECj5EVMu5DjjllWXVp0sIBDeGyX9S+SE26bG+wtuEPgrf0JrGdMROVG/
8/ZUEHAvLzq7pNsBez88zg29JdML2JdRUeOAoqYLTsbVBLJyCls2RjhgRL53
5rW7BCp52WOKL5bidrc8o6onBG6YDtpr37ZH85pZSaeeEbhb4pL46KQ99pvH
NSW1ENDzzXeXJthjlK5nnJOEwNbqw+E+tvYY/XUI73UQuChqi7l42w53ZLut
b+oj0Fsj9/DJM1u0+uVG2fV+2T8I1m6j/rTF4WQ9xSODBHTDDD3xtC3Ghg6U
+I8SaAzXcerYbItxdqcnJNME+OKumOhpLu7s6Mt5r0pBDVOp+LMtF2uz3yd9
ZVLwLLjl2w59LjLcJZvG1Cng+yhKljG4mFN611xFi4Jl0ueVeS02eOM/OY0W
8yiwu1QbIoi1wT7KXiF9EQV/P4o+V1VrjTaSxV8OmlFgIqC2TlyxxpRM6tmx
JRR8nTy+WpRtjaojqnlF1hS8lOdbS8Ot0VjcsfSpIwXmGYt4htrWGBK+Z4fB
Cgqqmxnb+hOs8KpeotDEhwKdzQ/iFUOtcOhJpIuVHwXt5zT7XfytMN1OoOYe
SEHxNXHV4sVWeH6Wacn29TI+Zqflw25LfHP1ybvaSAq8BwUq/15rib4DLL+g
wxTc2uqTuzfIAicHVI7wjlCgWzQZt3+lBV4cnGo2zaaA1xJYct7FAseHWn+b
PE7B9NqFk6oLLDBv9LRH7jkKxkuuMG62LcH+KZbL0z8oMJA49euqLsEshp45
v1GGtxtYG5huhk0sPeYiZTZoFibp29Vx8GNVV+UsFTa0rzDs7S3m4M/Vhb9L
VdnQ/X1w743jHFySY1FVoM6GgJ/dtjGRHMxR9QjR1WHDhzW6nDvzObhmOq5a
yYgNo1m7WD7ppvihvTn0HY8N6UXcRVP+JjiZv7suN40N9boLT7vNXYgDykn+
RnI0uDY+P/kslcJhS/GnWQo0HOB+g5sRFI4GaaT1KdKQ552qeWwdhZNlhVdv
KtOwZSzllJc9hQrCFkWeBg1Fe+7tyhohqFO8qDLYgIZYnzaJcBtBJ89OvVNO
NNRPer7/WGCAGRn8HtUkGvzbDhinaOih+Gx29cIUGgrSnv+c+5GF8mVdh3i7
aFjHuF96tIaFya9SuMm7aci5VRxDh7FwO/vW/i8HafBo2cIqq9bFgNoFpg1n
aOjbcoLTJfwXzh9UitpXS8MVc+OqlUnaKFQM5BXU03C2YUz9jpc25upc1KlD
GjYUbekaYWmjuvOyu6NiGuJ59hLxbS2Uz0zQDG2moVI5Ve7J+K8opT9V8Dpp
6N/zNuVB2Byk7bgHgt/REGzzv537rebgJu89QckfaBgp7hUoz2hia4who0JK
w/rw/XIuJzWxqW7NamqAhmFp38DLDA2c9bzQ1HmIhpgJwzwFAw106xn5IRyh
YWvbZYNzFepYr3r0ytEJGo6fzP1F9a0aTut3Jl+booHRHTznbaQa2lsu9m2Y
psGT2WajNsPE+OXJdM8PGnpE/mYFR5lYvqZhYmaGBvGrBaXHKCb+A+jUU+E=
"]],
LineBox[{{-1.5711157076367142`,
63.056208167228505`}, {-1.5710620681524283`, -72.46028026730033}}],
LineBox[{{1.5744546678429403`, 63.056208167228505`}, {
1.5744633359996125`, -72.46028026730033}}],
LineBox[{{7.857721243379987, 63.056208167228505`}, {
7.857728241827581, -72.46028026730033}}],
LineBox[{{4.71520828708543, 63.056208167228505`}, {
4.715235390046122, -72.46028026730033}}]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{-2, 10}, {-72.46028026730033, 63.056208167228505`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.682605742798668*^9, 3.682605916939864*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
InterpretationBox[
RowBox[{
"4.684093535000001`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]", "348.6353523166358`",
"\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]", "2.415906465`"}],
SequenceForm[
4.684093535000001, " ", 348.6353523166358, " ", 2.415906465],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.68260591694337*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.4761403025`", "\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]",
RowBox[{"-", "6.326372847809125`*^-8"}],
"\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]",
"1.2079532325`"}],
SequenceForm[
3.4761403025, " ", -6.326372847809125*^-8, " ", 1.2079532325],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.6826059169443717`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"2.8721636862500004`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "5.633598306306345`"}], "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]", "0.60397661625`"}],
SequenceForm[
2.8721636862500004`, " ", -5.633598306306345, " ", 0.60397661625],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.682605916945874*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.1741519943750003`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "2.8484434826980607`"}], "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]", "0.301988308125`"}],
SequenceForm[
3.1741519943750003`, " ", -2.8484434826980607`, " ", 0.301988308125],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.6826059169473763`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.3251461484375002`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "1.4687153351918092`"}], "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]", "0.1509941540625`"}],
SequenceForm[
3.3251461484375002`, " ", -1.4687153351918092`, " ",
0.1509941540625],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.6826059169488783`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.4006432254687504`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "0.7505914116381014`"}], "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]", "0.07549707703125`"}],
SequenceForm[
3.4006432254687504`, " ", -0.7505914116381014, " ",
0.07549707703125],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.6826059169498796`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.4383917639843755`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "0.38006648800166554`"}],
"\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]",
"0.037748538515625`"}],
SequenceForm[
3.4383917639843755`, " ", -0.38006648800166554`, " ",
0.037748538515625],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.6826059169513817`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.457266033242188`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "0.1913211828054373`"}], "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]", "0.0188742692578125`"}],
SequenceForm[
3.457266033242188, " ", -0.1913211828054373, " ",
0.0188742692578125],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.6826059169528847`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.4667031678710942`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "0.09599494691014243`"}],
"\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]",
"0.00943713462890625`"}],
SequenceForm[
3.4667031678710942`, " ", -0.09599494691014243, " ",
0.00943713462890625],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.6826059169538865`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.4714217351855474`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "0.048082659237321135`"}],
"\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]",
"0.004718567314453125`"}],
SequenceForm[
3.4714217351855474`, " ", -0.048082659237321135`, " ",
0.004718567314453125],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.682605916955388*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.473781018842774`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "0.024062848363956668`"}],
"\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]",
"0.0023592836572265624`"}],
SequenceForm[
3.473781018842774, " ", -0.024062848363956668`, " ",
0.0023592836572265624`],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.682605916956891*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.474960660671387`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "0.012036852536799092`"}],
"\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]",
"0.0011796418286132812`"}],
SequenceForm[
3.474960660671387, " ", -0.012036852536799092`, " ",
0.0011796418286132812`],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.6826059169578924`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.4755504815856937`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "0.006019810206808973`"}],
"\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]",
"0.0005898209143066406`"}],
SequenceForm[
3.4755504815856937`, " ", -0.006019810206808973, " ",
0.0005898209143066406],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.6826059169598956`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.475845392042847`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "0.0030102752031138102`"}],
"\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]",
"0.0002949104571533203`"}],
SequenceForm[
3.475845392042847, " ", -0.0030102752031138102`, " ",
0.0002949104571533203],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.682605916960897*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.475992847271424`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "0.001505253899312553`"}],
"\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]",
"0.00014745522857666015`"}],
SequenceForm[
3.475992847271424, " ", -0.001505253899312553, " ",
0.00014745522857666015`],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.6826059169623995`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.4760665748857122`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "0.000752679754109753`"}],
"\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]",
"0.00007372761428833008`"}],
SequenceForm[
3.4760665748857122`, " ", -0.000752679754109753, " ",
0.00007372761428833008],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.6826059169639015`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.4761034386928564`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "0.00037637680282998076`"}],
"\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]",
"0.00003686380714416504`"}],
SequenceForm[
3.4761034386928564`, " ", -0.00037637680282998076`, " ",
0.00003686380714416504],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.682605916964903*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.4761218705964283`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "0.00018822135685292452`"}],
"\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]",
"0.00001843190357208252`"}],
SequenceForm[
3.4761218705964283`, " ", -0.00018822135685292452`, " ",
0.00001843190357208252],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.6826059169669065`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.4761310865482145`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "0.00009414264119378402`"}],
"\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]",
"9.21595178604126`*^-6"}],
SequenceForm[
3.4761310865482145`, " ", -0.00009414264119378402, " ",
9.21595178604126*^-6],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.6826059169684086`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.4761356945241073`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "0.00004710303518917769`"}],
"\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]",
"4.60797589302063`*^-6"}],
SequenceForm[
3.4761356945241073`, " ", -0.00004710303518917769, " ",
4.60797589302063*^-6],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.6826059169699106`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.476137998512054`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "0.00002358317013850808`"}],
"\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]",
"2.303987946510315`*^-6"}],
SequenceForm[
3.476137998512054, " ", -0.00002358317013850808, " ",
2.303987946510315*^-6],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.6826059169709125`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
"3.476139150506027`", "\[InvisibleSpace]", "\<\" \"\>",
"\[InvisibleSpace]",
RowBox[{"-", "0.000011823222103579667`"}],
"\[InvisibleSpace]", "\<\" \"\>", "\[InvisibleSpace]",
"1.1519939732551574`*^-6"}],
SequenceForm[
3.476139150506027, " ", -0.000011823222103579667`, " ",
1.1519939732551574`*^-6],
Editable->False]], "Print",
CellChangeTimes->{{3.6826057325709114`*^9, 3.682605916972415*^9}}]
}, Open ]]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.6826057498370028`*^9, 3.6826057515661745`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"newtons", " ", "method"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"g", "[", "x_", "]"}], " ", "=", " ",
RowBox[{
RowBox[{"10",
RowBox[{"(",
RowBox[{"Tan", "[", "x", "]"}], ")"}]}], " ", "-", " ", "x"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"gp", "[", "x_", "]"}], " ", "=", " ",
RowBox[{
RowBox[{"g", "'"}], "[", "x", "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"g", "[", "x", "]"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "2"}], ",", "10"}], "}"}]}], "]"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"For", "[",
RowBox[{
RowBox[{
RowBox[{"i", " ", "=", " ", "1"}], ";", " ",
RowBox[{"y", " ", "=", " ", "4."}]}], ",", " ",
RowBox[{"i", " ", "<", " ", "7"}], ",", " ",
RowBox[{"i", "++"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"y", " ", "=", " ",
RowBox[{"y", " ", "-", " ",
RowBox[{
RowBox[{"g", "[", "y", "]"}], "/",
RowBox[{"gp", "[", "y", "]"}]}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"y", ",", "\"\< \>\"", ",",
RowBox[{"f", "[", "y", "]"}]}], "]"}]}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.6826061048934965`*^9, 3.6826062576154633`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwBsQJO/SFib1JlAgAAACoAAAACAAAAir1Cvv///7+Co7CitNk3QPw+dpjs
8P+/AwAxF5wPOEBvwKly2eH/v1ppdHNpRjhAVMMQJ7PD/7+7zl92zrY4QB7J
3o9mh/+/T68OVHqjOUCQShJqU3j/v33gUlhI4TlAA8xFREBp/7/4I5KdMyA6
QOjOrPgZS/+/kMawtoKhOkCz1HphzQ7/v6fjyPL6sjtAJlauO7r//r8mb3Le
qPo7QJjX4RWn8P6/4LQWm75DPEB+2kjKgNL+v4QjC0tO2jxASOAWMzSW/r+E
U17tUho+QLphSg0hh/6/oASi9JBuPkAt433nDXj+v9WPpLOdxD5AEubkm+dZ
/r8v708UYnY/QNzrsgSbHf6/WohKgDt5QEBObebehw7+v/2BKZKDq0BAwe4Z
uXT//b+emNEM/N5AQKbxgG1O4f2/FsiMlatJQUBw907WAaX9v2JCIYdjL0JA
4niCsO6V/b9to7EfimxCQFX6tYrbhv2/dATca0yrQkA6/Rw/tWj9vyXelDDo
LUNABAPrp2gs/b+FnJJxkElEQHaEHoJVHf2/azLYRaOVREDpBVJcQg79v3nH
DAL240RAzgi5EBzw/L9eSi0uxodFQECK7OoI4fy/P5UyUH3dRUCzCyDF9dH8
vwV2FwPoNUZAmA6Hec+z/L8uSjsLYe9GQAqQulO8pPy/BX43lrlQR0B9Ee4t
qZX8v/Ri2oFatUdAYhRV4oJ3/L/K1MCgJ4lIQC0aI0s2O/y/YhSzmYtgSkBm
nwSJ3ir8v5efNRLK7EpAoCTmxoYa/L83u/AfAn9LQBIvqULX+fu/kixTKPu2
TEBLtIqAf+n7v8plf+ShXU1AhDlsvifZ+7/mu67yDwxOQPZDLzp4uPu/BRvT
jI+CT0DvofLyF7j7v9wBSNQxh09AQ/5dhQ==
"]], LineBox[CompressedData["
1:eJwVlGc4FuoDh41DaFll02u+2XvzPOb7GilyjCiOEJKUiJNVSAqRInE6doUi
bcXzoKSSZEVGdrZ3l/0//w+/6/5yf7uv60fwO+0SwMHGxob/2/9Zff9QcOMq
C8m3HDWJlHLBvkJChUIMFgpZNeDsHHPGKXri4l8nWWiAgzSg5O+MK90JtzN7
WcjBaVvV+sIhzCjQuMn7goWCPnj0aPEfwmKN+oLv77HQa40S3nOHD2LzUbOs
5NssRH0mZSCa5YSvyDumb8WwUNj+x1WpcgfwQ9vDfA0hLPQ5mpNHLcYRdwUd
ufK3FwvlrCSYi/Q5YImHQclMUxaSnWbzXCq1x/DLaY4naiw0tk8wYYewPfan
RiWGS7PQQ6Vctc40O/xILyV2fouJzgsuCG0mk3G3e/rqfQoTmRzNquriJePf
MTnRgWNMpH9xf8i+HBK2bCw+N9bMROZzP47q1tniE6P3aXefMNEv1bjiayRb
nM5RG+5dxkTTxJTwuFEb3GfbGPothYlIjdnfYyRtcMiX7/6fyUzUYJ95+9xL
K3ydOjZ+1YiJ+oLLbikGWuGnQrO+ZGUmijj2vJu81wpvuv/ybtnORPyrV1vD
4yzxjVGhP191MFD/meQP5f4W+AWHRHcUYqCt5Ds+8nIWeEhe1lm3loGmNM07
vCcgVgzWPFCTzUCJm/Vzz4Igrqc62pS7MtCuQbPE+3wABxPv+dfYMFA8TebK
cLE5FvVhT36lz0D2SSHsl0zMcVT7s+bPogwEknkDmiPNsPY9acgaoqPmd23V
LE5TPDYc7cPWQUd96wuEyGoTnCXcHc+H6MgmlL2l3c0EL11MbZAupiPEWany
qdYYV3pTjEkBdCSp1hGZGG2EPXPsjzi70ZG4iooeUDfCPB/LYrxIdHTVqzf6
1JQhDjTwfHl6Px0Vtnw9tOhuiGUFm/VuL9LQvom2ID9HA1zwPkdzNpKG/Ex+
+KSd1MP2m4sH6YE01H/xVjVFRw+v6pJPb7jTkMy7tWOWG7rYo2T9oYAxDWV2
dwtn3NDFwnEBKsabVLTzWFaO3HsdnK5toHjtMhUpuXCocrpqY5PgbJtb56ko
Y5m3oISojef+nff/N4iKnk/lnx3d0MLknUWlT+yp//Uxl9pfqYX/mOEhDO2i
Im9O7zNZvFo49p/vEmp5FMQR/Uh5f7MGpn0bv0u7TEEe0tuDfKM0cJDgPOFl
FAWRyCIpd1U08OHUNSUrNwoad318WjRfHSufkdT13ENBGdapMScT1HBt2pvb
fErLyGyg3sg+UgUXbrbfvcW9jEqE1KszDFRwasRw2b7pJVRHOViQvqqMjx3d
rNUvX0ILu8O0Hl1Sxju04Ac/uSWUd6NKX7pgPz7R37JSL7OIVMje//6cVcIu
B3q2bLYWUF5e4Ha350rYvHmS6+vIAnpYtn7ZKUkJC1dzCf78ZwFxXTne3C2t
hJsTSMpCkgvIktOGZ9FLEUsrfTpyUnQeyf/eORWxII/7IrteSwjMou9F24bH
PGVxvry65VfaDFKMicrS1ZfF3t1pbZd7ZpDUyXiXz4KyeFzTopeaN4OMve9R
29sJeGm+Zum99AxKzhVVnrUiYC6/DMI51Z/I4a/KbW1m+7CuEzm1nTSF/BZL
UilPJfGv9dKdl/ZPIbo+Dmq6IInrq7ZyDLZPobmwrcF5S0kMeV8UlXRMomd2
F16TuySww1uF+ug/J5FA2g8tDqY49jPmXJQ/PoEYZ4ivE+3EcLZio0tc/BgS
f16R/11pLx4fiix6cHQMpZcX8gzT92DtHLWlXtMxtGrM8Uwe78FdW4Vp6muj
6G5lwK8Ezz1YeOAC/nF+FI1M/DB0vC6MVUUivJPHRxCKFPsYxS2E9ceChXa1
fUeDfly1iVL82CHS/SIhpwul3laKNr3BhbebGl06UFP63/+pGLgQ+5B4pAdL
Qv4DqPgFcp88XgdMqlVuYsUHcF1zJHzNfgN0hmnoTxE/glGvutS0yQ1wOYg7
6pHaJ2Dm/KooXnQLUL2eMqHBZ8A188F2vYkN+hOurGqXdwK2NeBtr8cJTXgm
V9xf9gC1d3fjNCx44P3WAburKz1Ak80yoCeHB+5N+ZL/xrgXKJ8HpJfTPJDC
/tqI0NALlmtFVmEGL6xYy46Za+oDpfx/l58d5oOCy2Al9lM/6A//V9z62k44
21vwu3hkCDSAe4UuNwTg/X1rpASJYdAz/utbdoMADDx5JM/bYxjkHkqcW58R
gJNsYvoiXcNAtYh70gMKwhGV3Ij0dyNAT9mpzpAqCGch+byJ2yjoOPFJTNZb
GA7nWtIUzMaBp7+lrLeXCDQ1peXf9BoHj7IsGz0zRGDhWLEF59/jIJR4vSgf
icAjquzZo8/HQXCSWu2EvCj81oQ0CjQnQNjSc+Yrmij8umB6il9+EtSHDK9b
FIrDd5YGM6t800CvTe6HjLo05EfwQCdxGuhnsd8iBktDbxP7unLbabBDbP3B
jTJpSNM5Gnvo0jRg89wwz5KUgdIKSfwVK9OA1z7/RRXPPhi97Yuh88xP8PY6
1eDRNgJsSer/R5F7BjSwwoxyiAS4i22cY11uBuQF0H8+tSPAst+M9gqfGXCq
4e+Wx+kE+HVW/K/1vhkgLrA7r3KPLFRuD0y7924W2Frmdp7WlYOR5PCl2IlZ
4AuGPbI85SB+G3PYhX0O9Cku+m/Ey0G3hnSpDdM5IL3zXWXTRzmY9KjuscvT
ORD1KrVYOFAeDmVtDmyUzAOnY+oB3A8VYOafucquiYsg+hj72erLROj40aqt
rmgR1Mel5Li/IUI+QA0QaFoEAne8SPk0IkwhOhZ3sC+BLJk3E/O++2HsGruo
XdIS4N528LysjTIMKT7FZX55GSxSQp0b1FUhca9EaWHFMhh1P+zseloVTl1t
g2uty2CyrSX2Va0q1KwXMB/ipABL5aq6LT01WF0aGpNvTQH9FQW86/bqsDRK
liLUSgGjAXrsuc6akENrxdyqjwJuHrq5/UKMJvSd/5JxdpoCCmLJCrRiTSjt
G6fylZsKvDtfO5QxNOEdu/7ATBIVdIjjlfhiLbjCWfOswZ0KjIUfBBzp0IIe
jSl/LJ6ggtB9bmHTa1pwr45OicMVKoj7SeKX9dSG2ZKZwzwfqMAuqE2vWlIH
Uvr8VQ0HqGDs+BOjrIM60Cnb5MKJWSqIzw6NdkzSgTu4Z0VbeWmAN+zaiP+i
DryybOWaZE8D4quZ31radWFC88rHjU80kK/Sfj2hUR/SflQOiAzSAHfkxuvM
DX0YuOE1ozVHA55P5K+9NTOAjoaNXIE8dCC/29W9tckAij66BDus6UC7J7RX
YcAQXvukc3DmMB1crzY2PSlrBDdnJo9yHP/PL/rtpHDKCE7JkS7oX6SDcymd
JxW3GcO6/O3P7zbQwej4mYUmJxOo8OLN25ftdJCz2Ce5u9wE3u451d01SAdh
s9ViZhsmMH53J4V7lQ4Mo1oz456YQoeUmyqn9RkgU5F09JqROWwssTFOs2EA
eamnx3qLzKE2ZpFLXRkgI5d46g4fgKJrHoHfzjIAixLRwJwCcDJcqhjUMMAD
3aDg0B8Qumd21Hg2MsDV993jp6Qt4MeqhMaIzwywM+xZp7SPBaydHhu8N88A
/qyRW9+mLKDcHzlzTasM4J6QYcutaglzCdYrg7xM0OuQaK19zhLGeVfs5Scy
QYb48+EhPitIiXFXUDZgAt/ZCbN0Tyvon8eja23LBFfWiivvVFpB+64Q52h/
JnCgVeeRXK3hXrJG+mgRE/hLNeWe/WAD0wJG76zWMEHw2UFCsbotXL+U/UAY
McFqXOMuxzxbONFAbyUPM4H+wD2f/ggSdBss6/VbYILjv8ud5GZI8OPvPydj
15hAcMdjn0ZfMqzVecn+WIwFHGef1E372EE552D+T0QWYOczK2X/aQdzw8Rl
pgxYQC1mRSItwh7GPog1FXNjAeMONQ2zuw5wuVXNQSeABRZ2RsSrmjlCv8kR
zwPnWKDMtTxk94QjtJOxOH/xBgvIyBgoFdo4QZahtexoCQvsCc83qRE6CGX1
J8JvV7HAEDu5Ryv1IPwfiHMI4w==
"]], LineBox[CompressedData["
1:eJwVVnk01PsbnmFGaob5zlxL9tAQMoxt7N/XOiYS3S43RFRSSRtSIUtCqcul
cm1X2i3llmWkmk+K6BaShFQXV4s1umkyi5/fH+95/njOc87znPOe5zy6Efs2
7pAhEAiCpfs/+mj/qZMSLsJXP9riEKe1Ecm0c6tJe0T4ja2C2B9d/mj18+/1
KsdEeCKvIupCoD/i9lwTrDktwpknKsMOjvmhnKFlL32qRLh9p7MsmeGHbg43
DoU2i3DtMe2f+8M2oBcfdn7Y/7cIryGPMwcu+yKV2Sc/CiZE+L7+EPl57npk
O39Y9ppIhH+CjPn5yz4oWGSo0EQR4+0hdXqz8j6onJy16q2JGC/WGz2n8u86
1LLC1njGQYzPvPo+dzRoHRqjfbIk+ojxPTS7r159PGSs7sVlRovxnMsbM/8d
8kJ3WPIxe6vF+BnaeO01bS7qs+QfPn5PjLPTkln1fE8ktI1KzXsmxvuox7ut
AzyRo1t7Qf2kGLdVFJOGizxQqFdC2ROxGPfnyUrvunig1PVrrg9QJfiq736H
IifcUVtgVrNkrQRXnLUMqvJ0R59CbFtpThJ85J3DHTmhG6JEfOrUXS/BD7BY
8o1Vbsgv2mvEY68Er3Ud+qdGzQ0NpsgvP1sjwUM1fvuyU8EViTP4jPL7EpyU
d/qPnk4XpHM6SvP2cwn+uscufjTPBW0/127WNyXBN4Pz/npNFzR1IytAmyXF
s3cc1ktwA4Tdst1q7izFfeLOrN+DAbKo+7TL1VeKB/PejBjex1H8A6+kyBgp
fgU9Y98ROyPCS/nLN29K8YxOb4LjOSdk45C/t+q+FI91zGRPejihvZe0ONef
SXG1q+wMS6EjGjxk8fTiuBRPbyxVCAh3RPVKIV8KDBbxScGumUp3BzSZ+KEp
z3oRrykWXu4mOCC9sf3pZ90XcV7zB67NA3uUW5+hkhWxiB8g7/MrdbRHuwNu
OR4rW8S9ffwTvnjaoYsP7OQSahbxdSa/Y0ZUO9Rv8Lgr9t4iPjf2Ije8xxZ5
fO+PiBlcxL80e8Y3htsizCf1sTmFADylbbe5pzlofLJyXJ9LgH/It+IMyDZI
Tnf/hgpfAnC22FldeW2NdH+xrlsVQAAGXJXtqrRGv94XJGntIMDqbXRM6Wdr
1HqmF1NNJwDrxwY5caUVKmdJbVYICJDgFvAoOM4SNUc8Ks5qI0BH1WnOhJ8l
6jufRVjWSYCGNoWkubWWSGGR8VT2LQECippLQj9YoKNdhlskCwQo2eh8b0+o
Bfplv3/6FxsiCJJb7Y+Hs1FOBW5Dx4kw/3rAQQps9LjX9DObS4SGy7lxo6vY
yMpuxYZDgUQI2yLr3z9sjpRkHqnPHybCQq1Dn1WUOerNt7ot4hNhtVHRvV9W
mCFqm94OzYdE6KLvrQnrZSF3IbbSqYMIyvJ136VlLFQXMpWUPECEE9UepXPW
LFTAvMojLiz5WXNkZPtuU7SpUXVYzkEGmLcOzAVPmKCcz+QCQzcZyFn94Ube
fRP0WOM/Ty9vGbg0sTmek2uCrFK6q7ODZUCjcqb+bxsTpMTLTqAmyoDpSYuP
o1nGqHdwgca4LwN2j60GgnAjtEn61lkLl4WaxNKTXhMGSCWiyf+OpyxYkdxz
258aoP7Wgu08X1mYTPt7WXqlAQo5430qbossVAVpLV7abYB2aDa9en5MFq5R
0LKUKSaKty+ITubLwrsu6uSCeDUqjF9X9J5Ngukp3YHtzvooaJBZE2dHgiha
X1q/vj7SdCYiigsJzIuzsYPL9Zf6hT/G8SOBDaNxWOmVHrpRwGTnxpAAaOWy
1Bg9dPc2oR2qSLBQzaAEX9VFQ9MN3y6uJoPBE73mctNVqNmvOWBwLRmkQc/x
lcqrUNFtQSPDmgy7qFHBQT90UGB8+5F0DzL4xoF3cKEO6pEMSLZHkqGF9eaj
qF8btVMl5DXXyfDvujhb2nYtVGfspnLTRA46x6rfVJeoozORXTZ3LZYBMfT7
Q9phZSTxyVjvzFkO4WPBJWUR8ujbucwwdTUKxKKYt7VrJgU2pUItd10K1Jll
D81OjQviL+8a2mtEgcej0k9Jtz8LhLe9Nz+0owAo9ufusvsoWOii/RwVRIF2
3fiDLOcRgXR5oWdDMQWE5X3CCugWyCVfN92oTYX2N1OWNtcGcM8MtcljBlRY
KTyX5PrrEJ6Zc6ryCosKUdbKF/+ivMfli6MNfzgv8a7esdOOI/gKvrlueRgV
ajd/VrO5+xFXnOMrTZdT4Ve+lXHz0VlcNbJDlK2vABvVs1umeEu9WWaobmSi
AP1u+UOmRCle/TrDtt1CAbxiQzl4kxR35bnGybkqgPp9d+8vygSIXts8nbZV
AdJazuo1nCFCy1z18LFSBUjkUJI080kQfTz3yV5VRcCk1Zw6AgU4/Okxqo4i
XLSglERHU0Bm1odUbaAIV+vK0x71U+BCxHKXcWtFOIZNrP/lDhVaPNLuRm5S
hJQJ8ZzHfkVQpcbWhOUpwnwD+WotmQ4thYH5/hQaOPFeJ4dPKoEXlxr+lEGD
tOCuTbipMjz/hlhu6jSQVu9k5ccoQ/9G46dWRjQIOSQqvzSnDDNUCWEllwZC
SbdWIUEVNFMrYt6l0aBQCVu7z1oNKswCHQNP0SA11k05M1kNDN9RVnTn0SAx
mVFs2a4GFg5xVx6W0yBzUhT98xZ14H3jDl1+sKTP32s4c1YD4ndN8fYs0ID3
tZbRRtcGKeUFZY6AgfPuMvDZoQ2wrergTRIGbQKmX26TNrTRt4IhFQO/Nx3e
odt1oCem481KDQzSb7zaXR++Cj6tKWGIbTG4fvAgiflKF0xS4o/wHTFQOs+/
VE7Wg5jXfv/EAgaCqcD2CzZ68DWDfHOKi4F6IbIlFumBdCSG9z4AAwpf58/F
SH1QLnVJaYnF4KyIndGlwYTIQ+aK3QkYTD08oCYXxAQ+T6fkbSIGST/5REoL
mRA0L24UnsDgR+55Y3c1AyjbwJ9hncNghrCtrEjfENbImIUV12PQ8Ma2/cw2
IzjSrzV1vQmD/isdUYRaI3h6k3qs4T4GHGfFsnSJEUQHj59/0YpBxH+Vn3uL
jeGvuiudy/owgNFgUugHE7DfqekcO49Ba4mielkTC047UZ6lLizl0XbKPa5u
BkM/LWz+TYqBe/fC7JdEM0hGr+Mq5egQkBNYGaBvDo/U8mv+UaHDHoszAdu+
m4PSl1SHaXU6/PVp/NotFhsi2/Z3iLTp4NX4YXYukg3yh3zHVAzp0KpjZnZ0
kA0+z5ZrrefQQa39zvmQTgsorRBWBjnQYbFibrO5oiVMJ3y0jcKX/vCBp9Bu
gyXkMls3pXPpUAI6IUqvLOFVckpOUyAdIjU5X2VmrSCU/V3ETKCD+miKq10s
B2LLh+ymj9GharncrSdtHDhFaznccJwO7mldLqoattA4lfPVM5MO2MSwpU2H
LWCVehM7z9OhzuvNOhcnezBQkzcyL6JDmWPJQMWf9uCYNRUpLKXD3Rc7PvuT
HGBXJH8k6wodYi84p870OkCLnu/gjbolvzKb1rSfc4L+PMuVB/l0COWHkMwU
nGGaoBZgf48OJ26pPq7NdAaN96Mvnj6iwx8TFydPnsQhtvhIx0QPHUJergy4
+xrg1IqwZXV9dFjoty/q0nWB8iPuHomDdKiWUFoVY1zgWSDtIXVkiT8wc2C/
giswla7wTWfp8PVSKndstxs4pp+a//YfHXxuzBjv6HCDjXP7rB4I6XDUNf3k
chN3SO62r/UlLK0FJ5POnUJ3KMBXTauQGOB3odglabsHVN4kr32/jAGS+N9b
Y3o9oC+n+9o+GgO2EINEj5AnTIrqxzg/MeDxeJDLRScuyOwp1ieoMmAxm5Hv
K+CCGS/yz1xtBoBZwCn3Hi/IIovP/2XKgK1hWj8cwRvKYod7j7AZcKJq0U1j
yhvqRtsYrtYMOOWIN4xc9IHhh3lnexwZIM2mPz/M9AWh+eFnRUvr5nlhqtpv
33zh48uqER03BgwRvXrZmRvgf1irWvA=
"]], LineBox[CompressedData["
1:eJwVlWk41P0XxocsYw2zYGZ+P0tIyL4MQ3OMfV+SECWVsjwRJQkhSkhTUSoR
lUqFkGSbr6dsJUkkUihPyVK0CG3/+b8417nu63Od+8V9vzgqIVHeOwQJBEIL
f/6/B2NFlCejSKD2IIi1D/NG0ik9NbnRJAibMPx+XswbydyIncvbSwLfofMn
Ywu8kFyfwtoL8STI/mHY+FvHC1HVtpVdSyFBq9DBS6k7PJGCG/Hd7XQSXBHJ
5rYSPREt7rZSbSYJwp9Ib00I9kB4548CxCVB/Ljvi9MUd6Q8XzjQnkeCByeW
1e4luCFVGkfuSQEJ2iTW7fF674o0InOyhy6RgEPIIAU8dUG6MirJX6r4fpGi
HrtGnZC+eXvDYi0JyHtvpd/e7YQMQyJ+/KknwanEmcEFASdkWns3WqKVBIq6
jVt5Ro6I+TrgtmwbCQT1Vh4ZeeaALEQIU/JdJHjySljEPNYBrfNz3qb2jATV
P3XnpXj2CFI/F2sNkKD9wfADVpg94pTnjegPkUDVucyPRLVH9r/ebLAaJ4Hb
8NRHzn475HEp1tF3ngTTf3nKRT62yLtLISPwOwl0v7EshWVtkc+X5taQJb4f
936Aw1Mb5GdLZEUJkMEnr0dupZcNCp4sXJspSwbb5hO5bTs5KESWE55LIYNZ
x1wWxYCDtlt8KMtTJENT1um85p/WaFeOgXKJCp9/9lN9l2eNovXb5RoMyPDQ
ROcMZwBQjH+EBzIhQ411+nHJ64D2psnktJuT4dFp56LBg4Di+wOEn1uTISqR
luOuASgl/vOPaS8ynFgMS2yTYCMuUniNxZBhmReFZTy3RBvTarve7CNDskhg
9cAZS4TbetYVHyDDrw8ee402WaJbHUdPqKSSYXXI0pOl9yzU1bNgrc7l3ytp
NS2IsZDg6/4ynQoyBIxs9ciJN0ddRdGnZ++Q4Rlon+10MkfcYMmUirtkKDi8
WHqPbo7wCRt//WYyVOxod7vYykQW09USxt1kKM2mzChQmCh2iRvNmiLDR9FY
XsugKbJo1An6NUuGOnTo3O5qUySY1OnUPE8GV7Fi4oXjpohLIKxiL/HzMt4M
W+xM0S3RqAEOkQJF0zxjzwYTNEFxs3DWoMDk4NG68XvG6ObgpIaEFgUIwVfI
dueMUcy5dFL3WgooJ3TlCx40RgSsacbNhAKdfzcbZbCNEaamXexlS4FXzzdl
Huw2Qr6GYkL+IRQ4MuK6fvybIdKJvS8fEUoBqS7hfJEhQyRQG6adFE4B3Yud
jQnNhuiWySPvkhgKJCYr9TkdNUSC5tklH9MoUD288HgTbohus6XYCZcpULFp
529dfwOUltLsnXONApqJ216XWhsgv9Z/QotuUmCmOOiWl5YBErTpOf5vDQXc
f4+LBf7SR372J0bEH1LA2JVXRLysj4TcZBMuTFAg0mEWzX/VQ8PHW4/fnqTA
QwXr7/6P9VBlz54S3gwFRM5+NmBc1kMBnn2d775RgCJSKnBjPZ+vPy2vI0yF
OaXydc31uigggHK3SZ0K5XfFN1adXIvu7FScex1KBfuMN+HzcdrI1RrVlIdT
Qa+u48sWf230nrZz//7dVNCVlDrzh6WNaD21f2TiqOB4M/Ncl4A2Sjf2lLLN
oEJ/8iaZjBNayE/gqFb5ZSo0Wd3LkKpZgwgXvm2PG6OCZ0bEuWqqJvLseTok
HSAPvnNhn2yZ6qjzrcq+ziB50NmXKeO+Sh3Bj1iZtK3y8OatrE2EtDrSV1Zw
+L5LHiIm9z4fm1BDMjHBta/2y8PCiFbxnVNqqJcyn3s9Xx4kR6d/1cyvQh5B
cracZ/IQWVn87WajKnKf8anY56gAhMAthJS9ymj8yZKDhosidBjNzbMr5VH9
mO1omiUNUgQ9tmf3SSG5nLr4c0ADUdm0L65pUijSTFOuypYGn98pJg0bSCGl
XAm71640GJZLf7+BK4mOsPrKzYJooDdlZlzrLIHWn9kSN5NEg5IiQZJ5LRF9
ckmQ8uXRILLPRYO5fgVy/DFdFvmABsr0WZucZUFUWhoEhztocD7fvDmrRBBt
WILYqqc0qHU435H6SQA1lYkOiY/RoLDkco5xOgEdE8i/wiPQAbYZdwmxfvLU
7lWy1nDooDnbrb5iYZZn81M+Y9mODlUXBcTvxc/wQtgpPY+d6MBV0Rs6uzTF
K+7w3Lrbiw6Tk8ODHd8/8Ggv54/UBNMBDdpQDAfHeTJLRn1Wh+gwltnTUTn+
kPfLon6XdxMdek+vYQ23/MemH1KuXoX4PGjgEJb+gW3xIPPntwd0eOmxccNq
14/s/S7+uWcf02GXbZv/3YkZ9pdNyzUjw3yOWQmFMb6wJxMt/4Yu8fkaq6Y1
jUvs/haUf9CUASn1gcrXNYSh16q/ztyCAeS6eIVPVcLQ3fRh8IcVAzSzx+LY
liLQ1iBN22vHgPbfwnJkX1GoqwssivRhAPdjUsbCGTEoqFgsC4phQPzxrEPR
XtKQt1aykx7HgBnn+f8iPkkD95bSx6EDDAic5FxryFkJx8rttX1TGaC9IbWm
JlQGEsryKt25DPjUW0XsrpSFwCL9enYFA/oNqS22oWTww2yHft9hgOQpR837
iP8XCjcuN95lALG8+ACRQQG388mWzGYG3GgUPGw/QIF1Z7qRfjcD4PCjsze9
5UE5d1eXyhRfe/jzeIk0YEglTo3O8vVq7qWu9zRQyDkhUTTPgHA//ftf+T3J
ZtW50ZYYYPSwv6BZmwGCR4T65IgYMKeLDvw7i8FE0qXhFRoYhHBGo/55qQyf
DnaqkrQwWDxTMMPCVGDpwFy4qi4GkqXjDZ9DVEA6Dn6CKQZPVl5xo8+rAHP3
GD3ZHoMsJ4tCquIq4EQStx93xmBUr1L88o5V4Bauf6vQHYN6NfleqFkFIaEp
lo2+GBw221/U5aUGxzcrBy2GYiCScIDeXagOBYGOV0UjMDj19uDwxS/qUBoQ
PUuNwuCe1v7n9U4aUO+Lkkz2Y+Duu7F96qcGvHUPLoo5igF9hYaa/h5NMGVf
Gp25hoFTP3PFs2vaAFadq3/dxKBlelL0ElUHXFhzURJVGOieLRzafFQHgs2A
oFWPQTD3Q/W73WshS29MeWcnBqz/tEwrN+rx+yeGxXVj8C39anDRoB4Ua+vf
yejFoC5meea3jj7Urk6xvvISg3yXNRUaNfowqqQcMj6JweTjg+sfPjWAKcyx
fG4GA7W/7r0naYbwjR795e8cBuTv76mzoYYgroDS8CUMcu2UTqYKGYGxTPDl
TWI4NNfuWa7xMYZ10pnT4VI4MP1uEJNvG4OTZJVRgiwO6prcLg+iCWwmEh4W
KOJQR5gr3fDQBDIJlyYG1uCQVOLarutnBn5nW0aK1+IQ3JKrzWwyg9W6r/vD
DHDYm6v9p0iVCe2baG2/mTgkl3+ljS4wQfhe3lV1RxzM5jdvf8uzgH63mouf
XXBgj1U9PmbOgisTz/Lve+BwwWctYXsdC2zlVh5x24jDBk6hLrPBEtL+ORa6
LxSHkJgNV1M/rQNvoeub2eE4CFGuNb7IYIPKhXZfsd04UPt98vtkAFDnCoeL
+3DweWoZ1loDwN2iyt55AAf3rAPbBMWsIXgBzAyScLgrLiv+Ndga/q5KXt2W
joO3T+LhCEUO9DQUKp3IxKHiiqmSVQIHirwa5f1zcBC1fRLo/YYD6w4tis6e
xuGtutLrxSobSByOmSRfxsF3tMLhUYYduO45OfamDIes1s9cSxF7oBOrXl4v
xyH1JzuhLtseGkxmOy2rcZAXD1/+U+YAWd0SrSJ1OESrJWkkWTlCwDat+733
+X2dic7eNuwIS9ydN7a38vMPiVVUXeMMnauPlOi24dDG1KLOvXKGgpYr5xY7
cbB74eJNPusCzJnxYzm9OAyZx/8a0HQD4mFCmm8/Drx19eEvCO4wqKiUoPwS
h6sxdmY/3rkDU2S9yNVhHEYEHPsNjnrA/wAkYzcP
"]], LineBox[CompressedData["
1:eJwVU3k41HsXt4wrGkuXvEbh+5tfwhTZBllyzGS9ZUvTlFJXqIYQ8try6m2T
txSlPVIJ3SLqIqFTTfeRaFFNyVbRVJJ9vSp33j/Oc/44z2c5n/McKiQ6IExB
Tk5up6z+38/M72zUYBBY8GCD4079ANwQ2JfmpETA/2BCekiXPzqKDPPWqBB4
zWr9w0bHHzlj1WZhswkslpjEPKj2Q1Z6QF2sGgEvlS/bL2/0w4ncfe2H5xCw
K3O5FRHri4H1o6+ztQgMWJl7Hmr1wQrp5he5cwn4WdyPUvLwwSg7XuN5FgEF
YxxLsl6JTRvLHxbMI5A9pdAmLl+BphnkXqG+bL6xoUuJuwJ73vysuk4R6GY8
HPbx+g158lE3y2kCGQIuX9LqjRdMO0r/NCLg+D3C2z/KG4OS7xTWmRJ4MXv3
Vr+LXtgyL/FYsyWBfobytVhLT7RY/inrubVsv6og+eR2D8yKFGS+4hLYZLYy
nsr0QK86m90dS2V+Q97PlfS5IwYPRX1zleWVOk/Y2eSGBgc2iYb4BDSnXcVd
B90wtexp2Jgbga7OZqNKTze0kytd/8OLgHFa/q7cx8uxtEDkrRZAoL5BW+jS
w0dmY6vbnEAC3ow38+RL+Sga9nSdKyDwWbOmTyeJj0Z8Y3v9dQQutAsamFp8
PNfTbWQWQsD0UmhqTyAP/2auoixDCVRHSCcYJjwUcu/P54YTKJAEPqa/u6LW
/gtaziIC++737XAocsVM4w3yK2MJpJGhl0PKrvjZt+m7XzyBHAHD1uQDoHui
42RgAoHa6Pw6qg5Q/hFrYH2y7L7RDnz3nYCJIkl75H8JHOmceR3f5oJh132r
D+XI/C2ffXX5uDMuZNfMjjpOoPDbj6sa951RemLBRt8TBFIux+8ty3LG8PQp
pV/PECj5EVMu5DjjllWXVp0sIBDeGyX9S+SE26bG+wtuEPgrf0JrGdMROVG/
8/ZUEHAvLzq7pNsBez88zg29JdML2JdRUeOAoqYLTsbVBLJyCls2RjhgRL53
5rW7BCp52WOKL5bidrc8o6onBG6YDtpr37ZH85pZSaeeEbhb4pL46KQ99pvH
NSW1ENDzzXeXJthjlK5nnJOEwNbqw+E+tvYY/XUI73UQuChqi7l42w53ZLut
b+oj0Fsj9/DJM1u0+uVG2fV+2T8I1m6j/rTF4WQ9xSODBHTDDD3xtC3Ghg6U
+I8SaAzXcerYbItxdqcnJNME+OKumOhpLu7s6Mt5r0pBDVOp+LMtF2uz3yd9
ZVLwLLjl2w59LjLcJZvG1Cng+yhKljG4mFN611xFi4Jl0ueVeS02eOM/OY0W
8yiwu1QbIoi1wT7KXiF9EQV/P4o+V1VrjTaSxV8OmlFgIqC2TlyxxpRM6tmx
JRR8nTy+WpRtjaojqnlF1hS8lOdbS8Ot0VjcsfSpIwXmGYt4htrWGBK+Z4fB
Cgqqmxnb+hOs8KpeotDEhwKdzQ/iFUOtcOhJpIuVHwXt5zT7XfytMN1OoOYe
SEHxNXHV4sVWeH6Wacn29TI+Zqflw25LfHP1ybvaSAq8BwUq/15rib4DLL+g
wxTc2uqTuzfIAicHVI7wjlCgWzQZt3+lBV4cnGo2zaaA1xJYct7FAseHWn+b
PE7B9NqFk6oLLDBv9LRH7jkKxkuuMG62LcH+KZbL0z8oMJA49euqLsEshp45
v1GGtxtYG5huhk0sPeYiZTZoFibp29Vx8GNVV+UsFTa0rzDs7S3m4M/Vhb9L
VdnQ/X1w743jHFySY1FVoM6GgJ/dtjGRHMxR9QjR1WHDhzW6nDvzObhmOq5a
yYgNo1m7WD7ppvihvTn0HY8N6UXcRVP+JjiZv7suN40N9boLT7vNXYgDykn+
RnI0uDY+P/kslcJhS/GnWQo0HOB+g5sRFI4GaaT1KdKQ552qeWwdhZNlhVdv
KtOwZSzllJc9hQrCFkWeBg1Fe+7tyhohqFO8qDLYgIZYnzaJcBtBJ89OvVNO
NNRPer7/WGCAGRn8HtUkGvzbDhinaOih+Gx29cIUGgrSnv+c+5GF8mVdh3i7
aFjHuF96tIaFya9SuMm7aci5VRxDh7FwO/vW/i8HafBo2cIqq9bFgNoFpg1n