-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrshim_pcie_lf.c
749 lines (613 loc) · 17.5 KB
/
rshim_pcie_lf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-only
/*
* rshim_pcie_lf.c - BlueField SoC RShim PCIe host driver for Livefish mode
*
* Copyright (c) 2020 NVIDIA Corporation. All rights reserved.
*/
#include <linux/pci.h>
#include <linux/version.h>
#include <linux/sched.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 11, 0)
#include <linux/sched/signal.h>
#endif
#include "rshim.h"
/* Disable RSim access. */
static int rshim_disable;
module_param(rshim_disable, int, 0444);
MODULE_PARM_DESC(rshim_disable, "Disable rshim (obsoleted)");
/** Our Vendor/Device IDs. */
#define TILERA_VENDOR_ID 0x15b3
#define BLUEFIELD1_DEVICE_ID 0x0211
#define BLUEFIELD2_DEVICE_ID 0x0214
/* Mellanox Address & Data Capabilities */
#define MELLANOX_ADDR 0x58
#define MELLANOX_DATA 0x5c
#define MELLANOX_CAP_READ 0x1
/* TRIO_CR_GATEWAY registers */
#define TRIO_CR_GW_LOCK 0xe38a0
#define TRIO_CR_GW_LOCK_CPY 0xe38a4
#define TRIO_CR_GW_DATA_UPPER 0xe38ac
#define TRIO_CR_GW_DATA_LOWER 0xe38b0
#define TRIO_CR_GW_CTL 0xe38b4
#define TRIO_CR_GW_ADDR_UPPER 0xe38b8
#define TRIO_CR_GW_ADDR_LOWER 0xe38bc
#define TRIO_CR_GW_LOCK_ACQUIRED 0x80000000
#define TRIO_CR_GW_LOCK_RELEASE 0x0
#define TRIO_CR_GW_BUSY 0x60000000
#define TRIO_CR_GW_TRIGGER 0xe0000000
#define TRIO_CR_GW_READ_4BYTE 0x6
#define TRIO_CR_GW_WRITE_4BYTE 0x2
#define CRSPACE_RSH_CHANNEL1_BASE 0x310000
struct rshim_pcie {
/* RShim backend structure. */
struct rshim_backend bd;
struct pci_dev *pci_dev;
/* Keep track of number of 8-byte word writes */
u8 write_count;
};
/* Mechanism to access the CR space using hidden PCI capabilities */
static int pci_cap_read(struct pci_dev *pci_dev, int offset,
u32 *result)
{
int retval;
/*
* Write target offset to MELLANOX_ADDR.
* Set LSB to indicate a read operation.
*/
retval = pci_write_config_dword(pci_dev, MELLANOX_ADDR,
offset | MELLANOX_CAP_READ);
if (retval)
return retval;
/* Read result from MELLANOX_DATA */
retval = pci_read_config_dword(pci_dev, MELLANOX_DATA,
result);
if (retval)
return retval;
return 0;
}
static int pci_cap_write(struct pci_dev *pci_dev, int offset,
u32 value)
{
int retval;
/* Write data to MELLANOX_DATA */
retval = pci_write_config_dword(pci_dev, MELLANOX_DATA,
value);
if (retval)
return retval;
/*
* Write target offset to MELLANOX_ADDR.
* Leave LSB clear to indicate a write operation.
*/
retval = pci_write_config_dword(pci_dev, MELLANOX_ADDR,
offset);
if (retval)
return retval;
return 0;
}
/* Acquire and release the TRIO_CR_GW_LOCK. */
static int trio_cr_gw_lock_acquire(struct pci_dev *pci_dev)
{
int retval, retry = 0;
u32 read_value;
/* Wait until TRIO_CR_GW_LOCK is free */
do {
retval = pci_cap_read(pci_dev, TRIO_CR_GW_LOCK,
&read_value);
if (retval)
return retval;
if (signal_pending(current))
return -EINTR;
if (++retry > LOCK_RETRY_CNT)
return -ETIMEDOUT;
} while (read_value & TRIO_CR_GW_LOCK_ACQUIRED);
/* Acquire TRIO_CR_GW_LOCK */
retval = pci_cap_write(pci_dev, TRIO_CR_GW_LOCK,
TRIO_CR_GW_LOCK_ACQUIRED);
if (retval)
return retval;
return 0;
}
static int trio_cr_gw_lock_release(struct pci_dev *pci_dev)
{
int retval;
/* Release TRIO_CR_GW_LOCK */
retval = pci_cap_write(pci_dev, TRIO_CR_GW_LOCK,
TRIO_CR_GW_LOCK_RELEASE);
return retval;
}
/*
* Mechanism to access the RShim from the CR space using the
* TRIO_CR_GATEWAY.
*/
static int crspace_rsh_gw_read(struct pci_dev *pci_dev, int addr,
u32 *result)
{
int retval;
if (pci_dev->device == BLUEFIELD2_DEVICE_ID) {
addr = (addr & 0xffff) + CRSPACE_RSH_CHANNEL1_BASE;
retval = pci_cap_read(pci_dev, addr, result);
return retval;
}
addr += RSH_CHANNEL_BASE(RSHIM_CHANNEL);
/* Acquire TRIO_CR_GW_LOCK */
retval = trio_cr_gw_lock_acquire(pci_dev);
if (retval)
return retval;
/* Write addr to TRIO_CR_GW_ADDR_LOWER */
retval = pci_cap_write(pci_dev, TRIO_CR_GW_ADDR_LOWER,
addr);
if (retval)
return retval;
/* Set TRIO_CR_GW_READ_4BYTE */
retval = pci_cap_write(pci_dev, TRIO_CR_GW_CTL,
TRIO_CR_GW_READ_4BYTE);
if (retval)
return retval;
/* Trigger TRIO_CR_GW to read from addr */
retval = pci_cap_write(pci_dev, TRIO_CR_GW_LOCK,
TRIO_CR_GW_TRIGGER);
if (retval)
return retval;
/* Read 32-bit data from TRIO_CR_GW_DATA_LOWER */
retval = pci_cap_read(pci_dev, TRIO_CR_GW_DATA_LOWER,
result);
if (retval)
return retval;
*result = be32_to_cpu(*result);
/* Release TRIO_CR_GW_LOCK */
retval = trio_cr_gw_lock_release(pci_dev);
if (retval)
return retval;
return 0;
}
static int crspace_rsh_gw_write(struct pci_dev *pci_dev, int addr,
u32 value)
{
int retval;
if (pci_dev->device == BLUEFIELD2_DEVICE_ID) {
addr = (addr & 0xffff) + CRSPACE_RSH_CHANNEL1_BASE;
retval = pci_cap_write(pci_dev, addr,
value);
return retval;
}
/*
* All Rshim accesses except writes to the BOOT_FIFO_DATA go through
* the Byte Access Widget and hence need to use the RSHIM_CHANNEL.
*/
if ((addr & 0xffff) != RSH_BOOT_FIFO_DATA)
addr += RSH_CHANNEL_BASE(RSHIM_CHANNEL);
/* Acquire TRIO_CR_GW_LOCK */
retval = trio_cr_gw_lock_acquire(pci_dev);
if (retval)
return retval;
/* Write 32-bit data to TRIO_CR_GW_DATA_LOWER */
retval = pci_cap_write(pci_dev, TRIO_CR_GW_DATA_LOWER,
cpu_to_be32(value));
if (retval)
return retval;
/* Write addr to TRIO_CR_GW_ADDR_LOWER */
retval = pci_cap_write(pci_dev, TRIO_CR_GW_ADDR_LOWER,
addr);
if (retval)
return retval;
/* Set TRIO_CR_GW_WRITE_4BYTE */
retval = pci_cap_write(pci_dev, TRIO_CR_GW_CTL,
TRIO_CR_GW_WRITE_4BYTE);
if (retval)
return retval;
/* Trigger CR gateway to write to RShim */
retval = pci_cap_write(pci_dev, TRIO_CR_GW_LOCK,
TRIO_CR_GW_TRIGGER);
if (retval)
return retval;
/* Release TRIO_CR_GW_LOCK */
retval = trio_cr_gw_lock_release(pci_dev);
if (retval)
return retval;
return 0;
}
/* Wait until the RSH_BYTE_ACC_CTL pending bit is cleared */
static int rshim_byte_acc_pending_wait(struct pci_dev *pci_dev)
{
int retval, retry = 0;
u32 read_value;
do {
retval = crspace_rsh_gw_read(pci_dev, RSH_BYTE_ACC_CTL,
&read_value);
if (retval)
return retval;
if (signal_pending(current))
return -EINTR;
if (++retry > LOCK_RETRY_CNT)
return -ETIMEDOUT;
} while (read_value & RSH_BYTE_ACC_PENDING);
return 0;
}
/* Acquire BAW Interlock */
static int rshim_byte_acc_lock_acquire(struct pci_dev *pci_dev)
{
int retval, retry = 0;
u32 read_value;
do {
if (signal_pending(current))
return -EINTR;
if (++retry > LOCK_RETRY_CNT)
return -ETIMEDOUT;
retval = crspace_rsh_gw_read(pci_dev, RSH_BYTE_ACC_INTERLOCK,
&read_value);
if (retval)
return retval;
} while (!(read_value & 0x1));
return 0;
}
/* Release BAW Interlock */
static int rshim_byte_acc_lock_release(struct pci_dev *pci_dev)
{
return crspace_rsh_gw_write(pci_dev,
RSH_BYTE_ACC_INTERLOCK, 0);
}
/*
* Mechanism to do an 8-byte access to the Rshim using
* two 4-byte accesses through the Rshim Byte Access Widget.
*/
static int rshim_byte_acc_read(struct pci_dev *pci_dev, int addr,
u64 *result)
{
int retval;
u32 read_value;
u64 read_result;
/* Wait for RSH_BYTE_ACC_CTL pending bit to be cleared */
retval = rshim_byte_acc_pending_wait(pci_dev);
if (retval)
return retval;
/* Acquire RSH_BYTE_ACC_INTERLOCK */
if (pci_dev->device == BLUEFIELD2_DEVICE_ID) {
retval = rshim_byte_acc_lock_acquire(pci_dev);
if (retval)
return retval;
}
/* Write target address to RSH_BYTE_ACC_ADDR */
retval = crspace_rsh_gw_write(pci_dev, RSH_BYTE_ACC_ADDR,
addr);
if (retval)
goto exit_read;
/* Write control and trigger bits to perform read */
retval = crspace_rsh_gw_write(pci_dev, RSH_BYTE_ACC_CTL,
RSH_BYTE_ACC_READ_TRIGGER | RSH_BYTE_ACC_SIZE_4BYTE);
if (retval)
goto exit_read;
/* Wait for RSH_BYTE_ACC_CTL pending bit to be cleared */
retval = rshim_byte_acc_pending_wait(pci_dev);
if (retval)
goto exit_read;
/* Read RSH_BYTE_ACC_RDAT to read lower 32-bits of data */
retval = crspace_rsh_gw_read(pci_dev, RSH_BYTE_ACC_RDAT,
&read_value);
if (retval)
goto exit_read;
read_result = (u64)read_value;
/* Wait for RSH_BYTE_ACC_CTL pending bit to be cleared */
retval = rshim_byte_acc_pending_wait(pci_dev);
if (retval)
goto exit_read;
/* Read RSH_BYTE_ACC_RDAT to read upper 32-bits of data */
retval = crspace_rsh_gw_read(pci_dev, RSH_BYTE_ACC_RDAT,
&read_value);
if (retval)
goto exit_read;
read_result |= ((u64)read_value << 32);
*result = read_result;
exit_read:
/* Release RSH_BYTE_ACC_INTERLOCK */
if (pci_dev->device == BLUEFIELD2_DEVICE_ID)
retval = rshim_byte_acc_lock_release(pci_dev);
return retval;
}
static int rshim_byte_acc_write(struct pci_dev *pci_dev, int addr,
u64 value)
{
int retval;
/* Wait for RSH_BYTE_ACC_CTL pending bit to be cleared */
retval = rshim_byte_acc_pending_wait(pci_dev);
if (retval)
return retval;
/* Acquire RSH_BYTE_ACC_INTERLOCK */
if (pci_dev->device == BLUEFIELD2_DEVICE_ID) {
retval = rshim_byte_acc_lock_acquire(pci_dev);
if (retval)
return retval;
}
/* Write target address to RSH_BYTE_ACC_ADDR */
retval = crspace_rsh_gw_write(pci_dev, RSH_BYTE_ACC_ADDR,
addr);
if (retval)
goto exit_write;
/* Write control bits to RSH_BYTE_ACC_CTL */
retval = crspace_rsh_gw_write(pci_dev, RSH_BYTE_ACC_CTL,
RSH_BYTE_ACC_SIZE_4BYTE);
if (retval)
goto exit_write;
/* Write lower 32 bits of data to TRIO_CR_GW_DATA */
retval = crspace_rsh_gw_write(pci_dev, RSH_BYTE_ACC_WDAT,
(u32)(value));
if (retval)
goto exit_write;
/* Wait for RSH_BYTE_ACC_CTL pending bit to be cleared */
retval = rshim_byte_acc_pending_wait(pci_dev);
if (retval)
goto exit_write;
/* Write upper 32 bits of data to TRIO_CR_GW_DATA */
retval = crspace_rsh_gw_write(pci_dev, RSH_BYTE_ACC_WDAT,
(u32)(value >> 32));
if (retval)
goto exit_write;
exit_write:
/* Release RSH_BYTE_ACC_INTERLOCK */
if (pci_dev->device == BLUEFIELD2_DEVICE_ID)
retval = rshim_byte_acc_lock_release(pci_dev);
return retval;
}
/*
* The RShim Boot FIFO has a holding register which can couple
* two consecutive 4-byte writes into a single 8-byte write
* before pushing the data into the FIFO.
* Hence the RShim Byte Access Widget is not necessary to write
* to the BOOT FIFO using 4-byte writes.
*/
static int rshim_boot_fifo_write(struct pci_dev *pci_dev, int addr,
u64 value)
{
int retval;
/* Write lower 32 bits of data to RSH_BOOT_FIFO_DATA */
retval = crspace_rsh_gw_write(pci_dev, addr, (u32)(value));
if (retval)
return retval;
/* Write upper 32 bits of data to RSH_BOOT_FIFO_DATA */
retval = crspace_rsh_gw_write(pci_dev, addr, (u32)(value >> 32));
if (retval)
return retval;
return 0;
}
/* RShim read/write routines */
static int rshim_pcie_read(struct rshim_backend *bd, int chan, int addr,
u64 *result)
{
struct rshim_pcie *dev = container_of(bd, struct rshim_pcie, bd);
struct pci_dev *pci_dev = dev->pci_dev;
int retval;
if (!bd->has_rshim || !dev->pci_dev)
return -ENODEV;
dev->write_count = 0;
retval = rshim_byte_acc_read(pci_dev, RSH_CHANNEL_BASE(chan) + addr,
result);
return retval;
}
static int rshim_pcie_write(struct rshim_backend *bd, int chan, int addr,
u64 value)
{
struct rshim_pcie *dev = container_of(bd, struct rshim_pcie, bd);
struct pci_dev *pci_dev = dev->pci_dev;
int retval;
u64 result;
bool is_boot_stream = (addr == RSH_BOOT_FIFO_DATA);
if (!bd->has_rshim || !dev->pci_dev)
return -ENODEV;
/*
* Limitation in BlueField-1
* We cannot stream large numbers of PCIe writes to the RShim.
* Instead, we must write no more than 15 words before
* doing a read from another register within the RShim,
* which forces previous writes to drain.
* Note that we allow a max write_count of 7 since each 8-byte
* write is done using 2 4-byte writes in the boot fifo case.
*/
if (pci_dev->device == BLUEFIELD1_DEVICE_ID) {
if (dev->write_count == 7) {
mb();
rshim_pcie_read(bd, RSHIM_CHANNEL, RSH_SCRATCHPAD,
&result);
}
dev->write_count++;
}
if (is_boot_stream)
retval = rshim_boot_fifo_write(pci_dev,
RSH_CHANNEL_BASE(chan) + addr,
value);
else
retval = rshim_byte_acc_write(pci_dev,
RSH_CHANNEL_BASE(chan) + addr,
value);
return retval;
}
static void rshim_pcie_delete(struct kref *kref)
{
struct rshim_backend *bd;
struct rshim_pcie *dev;
bd = container_of(kref, struct rshim_backend, kref);
dev = container_of(bd, struct rshim_pcie, bd);
rshim_deregister(bd);
if (dev->pci_dev)
dev_set_drvdata(&dev->pci_dev->dev, NULL);
kfree(dev);
}
/* Probe routine */
static int rshim_pcie_probe(struct pci_dev *pci_dev,
const struct pci_device_id *id)
{
struct rshim_pcie *dev = NULL;
struct rshim_backend *bd = NULL;
char *pcie_dev_name;
int retval, err = 0, allocfail = 0, max_name_len = 64;
pcie_dev_name = kzalloc(max_name_len, GFP_KERNEL);
if (!pcie_dev_name)
return -ENOMEM;
retval = snprintf(pcie_dev_name, max_name_len,
"pcie-lf-%04x:%02x:%02x.%x",
pci_domain_nr(pci_dev->bus),
pci_dev->bus->number, PCI_SLOT(pci_dev->devfn),
PCI_FUNC(pci_dev->devfn));
if (WARN_ON_ONCE(retval >= max_name_len)) {
err = -EINVAL;
goto error;
}
pr_debug("Probing %s\n", pcie_dev_name);
rshim_lock();
/* Find the backend. */
bd = rshim_find(pcie_dev_name);
if (bd) {
kref_get(&bd->kref);
dev = container_of(bd, struct rshim_pcie, bd);
} else {
/* Get some memory for this device's driver state. */
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (dev == NULL) {
err = -ENOMEM;
rshim_unlock();
goto error;
}
bd = &dev->bd;
bd->owner = THIS_MODULE;
bd->dev_name = pcie_dev_name;
bd->destroy = rshim_pcie_delete;
bd->read_rshim = rshim_pcie_read;
bd->write_rshim = rshim_pcie_write;
dev->write_count = 0;
mutex_init(&bd->mutex);
}
retval = rshim_fifo_alloc(bd);
if (retval) {
rshim_unlock();
ERROR("Failed to allocate fifo\n");
err = -ENOMEM;
goto enable_failed;
}
allocfail |= rshim_fifo_alloc(bd);
if (!bd->read_buf) {
bd->read_buf = kzalloc(READ_BUF_SIZE,
GFP_KERNEL);
}
allocfail |= bd->read_buf == 0;
if (!bd->write_buf) {
bd->write_buf = kzalloc(WRITE_BUF_SIZE,
GFP_KERNEL);
}
allocfail |= bd->write_buf == 0;
if (allocfail) {
rshim_unlock();
ERROR("can't allocate buffers");
goto enable_failed;
}
rshim_unlock();
/* Enable the device. */
err = pci_enable_device(pci_dev);
if (err != 0) {
ERROR("Device enable failed with error %d", err);
goto enable_failed;
}
/* Initialize object */
dev->pci_dev = pci_dev;
dev_set_drvdata(&pci_dev->dev, dev);
/* Enable PCI bus mastering. */
pci_set_master(pci_dev);
/*
* Register rshim here since it needs to detect whether other backend
* has already registered or not, which involves reading/writting rshim
* registers and has assumption that the under layer is working.
*/
rshim_lock();
bd->has_rshim = 1;
bd->has_tm = 1;
if (!bd->registered) {
retval = rshim_register(bd);
if (retval) {
ERROR("Backend register failed with error %d", retval);
rshim_unlock();
goto register_failed;
}
}
rshim_unlock();
/* Notify that the device is attached */
mutex_lock(&bd->mutex);
retval = rshim_notify(bd, RSH_EVENT_ATTACH, 0);
mutex_unlock(&bd->mutex);
if (retval)
goto register_failed;
return 0;
register_failed:
pci_disable_device(pci_dev);
enable_failed:
rshim_lock();
kref_put(&dev->bd.kref, rshim_pcie_delete);
rshim_unlock();
error:
kfree(pcie_dev_name);
return err;
}
/* Called via pci_unregister_driver() when the module is removed. */
static void rshim_pcie_remove(struct pci_dev *pci_dev)
{
struct rshim_pcie *dev = dev_get_drvdata(&pci_dev->dev);
int retval, flush_wq;
mutex_lock(&dev->bd.mutex);
/*
* Reset TRIO_PCIE_INTFC_RX_BAR0_ADDR_MASK and TRIO_MAP_RSH_BASE.
* Otherwise, upon host reboot, the two registers will retain previous
* values that don't match the new BAR0 address that is assigned to
* the PCIe ports, causing host MMIO access to RShim to fail.
*/
retval = rshim_pcie_write(&dev->bd, RSHIM_CHANNEL,
RSH_SWINT & 0xFFFF, RSH_INT_VEC0_RTC__SWINT3_MASK);
if (retval)
ERROR("RShim write failed");
/* Clear the flags before deleting the backend. */
dev->bd.has_rshim = 0;
dev->bd.has_tm = 0;
mutex_unlock(&dev->bd.mutex);
rshim_notify(&dev->bd, RSH_EVENT_DETACH, 0);
mutex_lock(&dev->bd.mutex);
flush_wq = !cancel_delayed_work(&dev->bd.work);
if (flush_wq)
flush_workqueue(rshim_wq);
dev->bd.has_cons_work = 0;
kfree(dev->bd.read_buf);
kfree(dev->bd.write_buf);
rshim_fifo_free(&dev->bd);
dev->pci_dev = NULL;
mutex_unlock(&dev->bd.mutex);
rshim_lock();
kref_put(&dev->bd.kref, rshim_pcie_delete);
rshim_unlock();
pci_disable_device(pci_dev);
dev_set_drvdata(&pci_dev->dev, NULL);
}
static struct pci_device_id rshim_pcie_table[] = {
{ PCI_DEVICE(TILERA_VENDOR_ID, BLUEFIELD1_DEVICE_ID), },
{ PCI_DEVICE(TILERA_VENDOR_ID, BLUEFIELD2_DEVICE_ID), },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, rshim_pcie_table);
static struct pci_driver rshim_pcie_driver = {
.name = "rshim_pcie_lf",
.probe = rshim_pcie_probe,
.remove = rshim_pcie_remove,
.id_table = rshim_pcie_table,
};
static int __init rshim_pcie_init(void)
{
int result;
/* Register the driver */
result = pci_register_driver(&rshim_pcie_driver);
if (result)
ERROR("pci_register failed, error number %d", result);
return result;
}
static void __exit rshim_pcie_exit(void)
{
/* Unregister the driver. */
pci_unregister_driver(&rshim_pcie_driver);
}
module_init(rshim_pcie_init);
module_exit(rshim_pcie_exit);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Mellanox Technologies");
MODULE_VERSION("0.8");