We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi!
Current implementation of target value in DDQN should be wrong. It is the target value of DQN actually.
https://github.com/MaximeVandegar/Papers-in-100-Lines-of-Code/blob/a518f16cfcba84b774fcbfe136a9f439ce94c231/Deep_Reinforcement_Learning_with_Double_Q_learning/ddqn.py#L88C21-L88C94
DQN:
In DDQN, we should use argmax(u) of online network:
# DDQN with torch.no_grad(): next_q_values = target_q_net(next_state) double_q = q_net(next_state).argmax(dim=1) next_q_values = next_q_values.gather(1, double_q.unsqueeze(1)).squeeze(1)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Hi!
Current implementation of target value in DDQN should be wrong. It is the target value of DQN actually.
https://github.com/MaximeVandegar/Papers-in-100-Lines-of-Code/blob/a518f16cfcba84b774fcbfe136a9f439ce94c231/Deep_Reinforcement_Learning_with_Double_Q_learning/ddqn.py#L88C21-L88C94
DQN:
In DDQN, we should use argmax(u) of online network:
The text was updated successfully, but these errors were encountered: