forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
executable file
·241 lines (202 loc) · 9.01 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#! /usr/bin/env python
#
# Copyright (C) 2007-2009 Cournapeau David <[email protected]>
# 2010 Fabian Pedregosa <[email protected]>
# License: 3-clause BSD
descr = """A set of python modules for machine learning and data mining"""
import sys
import os
import shutil
from distutils.command.clean import clean as Clean
from pkg_resources import parse_version
import traceback
if sys.version_info[0] < 3:
import __builtin__ as builtins
else:
import builtins
# This is a bit (!) hackish: we are setting a global variable so that the main
# sklearn __init__ can detect if it is being loaded by the setup routine, to
# avoid attempting to load components that aren't built yet:
# the numpy distutils extensions that are used by scikit-learn to recursively
# build the compiled extensions in sub-packages is based on the Python import
# machinery.
builtins.__SKLEARN_SETUP__ = True
DISTNAME = 'scikit-learn'
DESCRIPTION = 'A set of python modules for machine learning and data mining'
with open('README.rst') as f:
LONG_DESCRIPTION = f.read()
MAINTAINER = 'Andreas Mueller'
MAINTAINER_EMAIL = '[email protected]'
URL = 'http://scikit-learn.org'
DOWNLOAD_URL = 'https://pypi.org/project/scikit-learn/#files'
LICENSE = 'new BSD'
# We can actually import a restricted version of sklearn that
# does not need the compiled code
import sklearn
VERSION = sklearn.__version__
SCIPY_MIN_VERSION = '0.13.3'
NUMPY_MIN_VERSION = '1.8.2'
# Optional setuptools features
# We need to import setuptools early, if we want setuptools features,
# as it monkey-patches the 'setup' function
# For some commands, use setuptools
SETUPTOOLS_COMMANDS = set([
'develop', 'release', 'bdist_egg', 'bdist_rpm',
'bdist_wininst', 'install_egg_info', 'build_sphinx',
'egg_info', 'easy_install', 'upload', 'bdist_wheel',
'--single-version-externally-managed',
])
if SETUPTOOLS_COMMANDS.intersection(sys.argv):
import setuptools
extra_setuptools_args = dict(
zip_safe=False, # the package can run out of an .egg file
include_package_data=True,
extras_require={
'alldeps': (
'numpy >= {0}'.format(NUMPY_MIN_VERSION),
'scipy >= {0}'.format(SCIPY_MIN_VERSION),
),
},
)
else:
extra_setuptools_args = dict()
# Custom clean command to remove build artifacts
class CleanCommand(Clean):
description = "Remove build artifacts from the source tree"
def run(self):
Clean.run(self)
# Remove c files if we are not within a sdist package
cwd = os.path.abspath(os.path.dirname(__file__))
remove_c_files = not os.path.exists(os.path.join(cwd, 'PKG-INFO'))
if remove_c_files:
print('Will remove generated .c files')
if os.path.exists('build'):
shutil.rmtree('build')
for dirpath, dirnames, filenames in os.walk('sklearn'):
for filename in filenames:
if any(filename.endswith(suffix) for suffix in
(".so", ".pyd", ".dll", ".pyc")):
os.unlink(os.path.join(dirpath, filename))
continue
extension = os.path.splitext(filename)[1]
if remove_c_files and extension in ['.c', '.cpp']:
pyx_file = str.replace(filename, extension, '.pyx')
if os.path.exists(os.path.join(dirpath, pyx_file)):
os.unlink(os.path.join(dirpath, filename))
for dirname in dirnames:
if dirname == '__pycache__':
shutil.rmtree(os.path.join(dirpath, dirname))
cmdclass = {'clean': CleanCommand}
# Optional wheelhouse-uploader features
# To automate release of binary packages for scikit-learn we need a tool
# to download the packages generated by travis and appveyor workers (with
# version number matching the current release) and upload them all at once
# to PyPI at release time.
# The URL of the artifact repositories are configured in the setup.cfg file.
WHEELHOUSE_UPLOADER_COMMANDS = set(['fetch_artifacts', 'upload_all'])
if WHEELHOUSE_UPLOADER_COMMANDS.intersection(sys.argv):
import wheelhouse_uploader.cmd
cmdclass.update(vars(wheelhouse_uploader.cmd))
def configuration(parent_package='', top_path=None):
if os.path.exists('MANIFEST'):
os.remove('MANIFEST')
from numpy.distutils.misc_util import Configuration
config = Configuration(None, parent_package, top_path)
# Avoid non-useful msg:
# "Ignoring attempt to set 'name' (from ... "
config.set_options(ignore_setup_xxx_py=True,
assume_default_configuration=True,
delegate_options_to_subpackages=True,
quiet=True)
config.add_subpackage('sklearn')
return config
def get_numpy_status():
"""
Returns a dictionary containing a boolean specifying whether NumPy
is up-to-date, along with the version string (empty string if
not installed).
"""
numpy_status = {}
try:
import numpy
numpy_version = numpy.__version__
numpy_status['up_to_date'] = parse_version(
numpy_version) >= parse_version(NUMPY_MIN_VERSION)
numpy_status['version'] = numpy_version
except ImportError:
traceback.print_exc()
numpy_status['up_to_date'] = False
numpy_status['version'] = ""
return numpy_status
def setup_package():
metadata = dict(name=DISTNAME,
maintainer=MAINTAINER,
maintainer_email=MAINTAINER_EMAIL,
description=DESCRIPTION,
license=LICENSE,
url=URL,
download_url=DOWNLOAD_URL,
version=VERSION,
long_description=LONG_DESCRIPTION,
classifiers=['Intended Audience :: Science/Research',
'Intended Audience :: Developers',
'License :: OSI Approved',
'Programming Language :: C',
'Programming Language :: Python',
'Topic :: Software Development',
'Topic :: Scientific/Engineering',
'Operating System :: Microsoft :: Windows',
'Operating System :: POSIX',
'Operating System :: Unix',
'Operating System :: MacOS',
'Programming Language :: Python :: 2',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.4',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
],
cmdclass=cmdclass,
install_requires=[
'numpy>={0}'.format(NUMPY_MIN_VERSION),
'scipy>={0}'.format(SCIPY_MIN_VERSION)
],
**extra_setuptools_args)
if len(sys.argv) == 1 or (
len(sys.argv) >= 2 and ('--help' in sys.argv[1:] or
sys.argv[1] in ('--help-commands',
'egg_info',
'--version',
'clean'))):
# For these actions, NumPy is not required
#
# They are required to succeed without Numpy for example when
# pip is used to install Scikit-learn when Numpy is not yet present in
# the system.
try:
from setuptools import setup
except ImportError:
from distutils.core import setup
metadata['version'] = VERSION
else:
numpy_status = get_numpy_status()
numpy_req_str = "scikit-learn requires NumPy >= {0}.\n".format(
NUMPY_MIN_VERSION)
instructions = ("Installation instructions are available on the "
"scikit-learn website: "
"http://scikit-learn.org/stable/install.html\n")
if numpy_status['up_to_date'] is False:
if numpy_status['version']:
raise ImportError("Your installation of Numerical Python "
"(NumPy) {0} is out-of-date.\n{1}{2}"
.format(numpy_status['version'],
numpy_req_str, instructions))
else:
raise ImportError("Numerical Python (NumPy) is not "
"installed.\n{0}{1}"
.format(numpy_req_str, instructions))
from numpy.distutils.core import setup
metadata['configuration'] = configuration
setup(**metadata)
if __name__ == "__main__":
setup_package()