-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
219 lines (201 loc) · 9.67 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import argparse
import logging
import os
import sys
import time
import traceback
from datetime import datetime
from logging import Logger
from typing import Tuple
import torch
import torchvision
from torch import Tensor
from torch.optim import SGD
from torch.utils import data
from torch.utils.data import DataLoader
from torchvision.models.detection import FasterRCNN
from data.dataset import BoschDataset
from utils.utils import collate_fn
def parse_arguments() -> argparse.Namespace:
"""
Parser for the arguments
:return: Argument parser
"""
parser = argparse.ArgumentParser(description='Traffic Light Detection')
parser.add_argument('--label_file_train', '-ltrain', type=str,
help='Path to the yaml file with the labels for training')
parser.add_argument('--label_file_test', '-ltest', type=str,
help='Path to the yaml file with the labels for testing')
parser.add_argument('--device', '-d', type=str, default='cpu', help='Device for training and evaluation.')
parser.add_argument('--output_path', '-o', type=str, help='Path to output folder')
parser.add_argument('--data_path', type=str, help='Path to data folder')
parser.add_argument('--use_riib', type=lambda x: (str(x).lower() == 'true'), default=False,
help='Should the jpg or the riib images be used')
parser.add_argument('--num_workers', type=int, default=0, help='Number of workers for the data loader')
parser.add_argument('--batch_size_train', type=int, default=5, help='Batch Size for training')
parser.add_argument('--batch_size_test', type=int, default=5, help='Batch Size for testing')
parser.add_argument('--start_eval', type=int, default=5, help='Epochs after which a eval run is started.')
parser.add_argument('--epochs', type=int, default=100, help='Epochs for training.')
parser.add_argument('--lr', type=int, default=0.005, help='Learning rate for the optimizer')
parser.add_argument('--momentum', type=int, default=0.9, help='Momentum for the optimizer')
parser.add_argument('--weight_decay', type=int, default=0.0005, help='Weight decay for the optimizer')
parser.add_argument('--print_status', type=int, default=10, help='Print status updates')
args = parser.parse_args()
return args
def save_model(path, epochs, model, logger, avg_score=0, interrupted=False):
"""
Saves the model
:param path: Output path for the model
:param epochs: Current epoch
:param model: Model that we want to save
:param logger: Logger for logging handling
:param avg_score: Average score for one test loop
:param interrupted: If the training was interrupted and the reason for saving the model
"""
if interrupted:
file_path = os.path.join(path, f'fasterrcnn_{epochs}_interrupted.model')
else:
file_path = os.path.join(path, f'fasterrcnn_{epochs}_{avg_score}.model')
torch.save(model.state_dict(), file_path)
logger.info(f"Checkpoint Saved for epoch {epochs}")
def create_data_loader(args: argparse.Namespace) -> Tuple[DataLoader, DataLoader]:
"""
Creates two data loaders handling the data for training and testing
:param args: Arguments
:return Dataloaders: Daataloaders for training and testing
"""
train_dataset = BoschDataset(args.label_file_train, args.data_path, train=True, use_riib=args.use_riib)
test_dataset = BoschDataset(args.label_file_test, args.data_path, train=False, use_riib=args.use_riib)
train_dl = data.DataLoader(train_dataset,
batch_size=args.batch_size_train,
shuffle=True,
num_workers=args.num_workers,
collate_fn=collate_fn)
test_dl = data.DataLoader(test_dataset,
batch_size=args.batch_size_test,
shuffle=True,
num_workers=args.num_workers,
collate_fn=collate_fn)
return train_dl, test_dl
def start_evaluation(test_data_loader: DataLoader, model: FasterRCNN, device: str, epoch: int, logger: Logger,
args: argparse.Namespace) -> Tensor:
"""
Evaluate the model with the test set
:param test_data_loader: Data loader for test data:
:param model: Model that is being tested
:param device: Device for the computation
:param epoch: Current epoch
:param logger: Logger for logging handling
:param args: Arguments
:return:
"""
logger.info(f'Start evaluation after {epoch} epochs')
model.eval()
scores = []
for idx, result in enumerate(test_data_loader):
images = list(image.to(device) for image in result[0])
targets = result[1]
with torch.set_grad_enabled(False):
outputs = model(images)
for output_idx, element in enumerate(outputs):
predicted_labels = element['labels']
true_labels = targets[output_idx]['labels']
if len(element['scores']) != 0:
scores.append(torch.mean(element['scores']))
if idx % args.print_status:
logger.info(f'Scores {element["scores"]} \n'
f'Labels predicted: {predicted_labels} Groundtruth labels: {true_labels}')
avg_score = torch.mean(torch.Tensor(scores))
return avg_score
def train_one_epoch(train_data_loader: DataLoader, model: FasterRCNN, device: str, logger: Logger, optimizer: SGD,
args: argparse.Namespace) -> Tuple[float, float]:
"""
Training the model for one epoch
:param train_data_loader: Dataloader for training data
:param model: FasterRCNN model
:param device: Device for the computation
:param logger: Logger for logging handling
:param optimizer: Optmizer for the training
:param args: Arguments
:return:
"""
start = time.time()
model.train()
loss_per_iteration = []
for idx, result in enumerate(train_data_loader):
images = list(image.to(device) for image in result[0])
targets = result[1]
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
optimizer.zero_grad()
with torch.set_grad_enabled(True):
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
losses.backward()
optimizer.step()
loss_per_iteration.append(losses)
loss_doc_str = "".join("{}:{} ".format(key, val) for key, val in loss_dict.items())
if idx % args.print_status == 0:
logger.info(f'Iteration: [{idx}/{len(train_data_loader)}]\t'
f'Loss: {losses} \t'
f'Loss_dict: {loss_doc_str}')
epoch_time = time.time() - start
return loss_per_iteration, epoch_time
def creeate_logger(output_path: str) -> Logger:
"""
Creates a logger with two handlers. One for the output in standard output and one for the file writing
:param Output_path for the logging file:
:return Logger instance:
"""
new_logger = logging.getLogger(__name__)
new_logger.setLevel(logging.INFO)
new_logger.propagate = False
format_string = '%(asctime)s: %(message)s'
logger_filer_path = os.path.join(output_path, 'logger.txt')
c_handler = logging.StreamHandler(sys.stdout)
f_handler = logging.FileHandler(logger_filer_path, mode='w+')
c_handler.setLevel(logging.INFO)
f_handler.setLevel(logging.INFO)
handler_format = logging.Formatter(format_string, datefmt='%d_%b_%H:%M:%S')
c_handler.setFormatter(handler_format)
f_handler.setFormatter(handler_format)
new_logger.addHandler(f_handler)
new_logger.addHandler(c_handler)
return new_logger
def main():
"""
Handles the training process
"""
args = parse_arguments()
current_time = datetime.now().strftime("%d_%b_%H_%M_%S")
output_path = os.path.join(args.output_path, current_time)
os.makedirs(output_path, exist_ok=True)
logger = creeate_logger(output_path)
num_classes = 4
train_data_loader, test_data_loader = create_data_loader(args)
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=False, num_classes=num_classes)
device = args.device
model.to(device)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, args.lr, args.momentum, args.weight_decay)
best_eval_score = 0
for epoch in range(1, args.epochs + 1):
logger.info(f'Epoch {epoch}/{args.epochs}')
try:
loss_per_iteration, epoch_time = train_one_epoch(train_data_loader=train_data_loader, model=model,
device=device, logger=logger,
optimizer=optimizer, args=args)
avg_losses = torch.mean(torch.stack(loss_per_iteration))
logger.info(f'Epoch {epoch} avg Loss {avg_losses} with a runtime of {epoch_time}')
except (KeyboardInterrupt, SystemExit):
logger.error(f'Error: {traceback.format_exc()}')
save_model(path=output_path, model=model, epochs=epoch, logger=logger, interrupted=True)
sys.exit()
if epoch % args.start_eval == 0:
avg_score = start_evaluation(test_data_loader=test_data_loader, model=model, device=device, epoch=epoch,
logger=logger, args=args)
logger.info(f'Epoch {epoch} avg score {avg_score}')
if avg_score > best_eval_score:
best_eval_score = avg_score
save_model(path=output_path, epochs=epoch, model=model, logger=logger, avg_score=best_eval_score.item())
if __name__ == "__main__":
main()