-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutilize.py
72 lines (61 loc) · 2.64 KB
/
utilize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import numpy as np
from scipy.special import expit
def true_q_function_drl(state, action):
state1 = np.copy(state).flatten()
action1 = np.copy(action).flatten()
q_value = 0.533899 - 0.0122839 * action1 + 0.457572 * state1 - 0.27498 * action1 * state1
q_value = 10 * q_value
return q_value
def false_q_function_drl(state, action):
true_q = true_q_function_drl(state, action)
noise_q = true_q + np.random.normal(loc=1, scale=1, size=true_q.shape[0])
return noise_q
def true_q_function(state, action, mediator):
state1 = np.copy(state).flatten()
action1 = np.copy(action).flatten()
mediator1 = np.copy(mediator).flatten()
q_value = 5.45503 + 0.0366013*mediator1 + 0.0534233*action1*mediator1 + 0.0100351*state1 + \
0.0539304 * state1*action1 - 0.00404461 * state1 * mediator1 - 0.00446658*action1*mediator1*state1
q_value = 10 * q_value
return q_value
def false_q_function(state, action, mediator):
true_q = true_q_function(state, action, mediator)
noise_q = true_q + np.random.uniform(low=0, high=1, size=true_q.shape[0])
return noise_q
def true_pa_function(state, action):
state1 = np.copy(state).flatten()
action1 = np.copy(action).flatten()
pa_one = 0.5 + 0.02054205*state1
pa = action1*pa_one + (1.0-action1)*(1.0-pa_one)
return pa
def false_pa_function(state, action):
true_pa = true_pa_function(state, action)
noise_pa = true_pa * np.random.uniform(low=0.75, high=1.0, size=true_pa.shape[0])
noise_pa = np.clip(noise_pa, a_min=0.01, a_max=1.0)
return noise_pa
def true_pm_function(state, action, mediator):
state1 = np.copy(state).flatten()
action1 = np.copy(action).flatten()
mediator1 = np.copy(mediator).flatten()
pm_one = expit(0.1*state1 + 0.9*action1 - 0.45)
pm = mediator1*pm_one + (1.0-mediator1)*(1.0-pm_one)
return pm
def false_pm_function(state, action, mediator):
true_pm = true_pm_function(state, action, mediator)
noise_pm = true_pm * np.random.uniform(low=0.7, high=1.2, size=true_pm.shape[0])
noise_pm = np.clip(noise_pm, a_min=0.01, a_max=1.0)
return noise_pm
def true_ratio_function(state):
## the ratio value is computed from the "verify_ratio.py"
# ratio = np.array([1.02712501, 0.98431272])
ratio = np.array([1.03375778, 0.97257431])
state1 = np.copy(state).flatten()
state1 = state1.astype(int)
return ratio[state1]
def false_ratio_function(state):
ratio = np.array([1.03375778, 0.97257431])
noise_ratio = np.random.uniform(low=0.0, high=1.0, size=2)
ratio = ratio + noise_ratio
state1 = np.copy(state).flatten()
state1 = state1.astype(int)
return ratio[state1]