-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresult_variants.py
313 lines (246 loc) · 10.3 KB
/
result_variants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
"""
Proving to myself that the `Union` type can be used for encapsulating _variants_
of a type and narrowing them ergonomically and statically, precluding
`TypeGuard`, which relies on a runtime function, and a series of `isinstance`
checks.
I chose to implement a Result Monad as the type-with-variants, as it is familiar
from Rust and close to something I use in production code at work.
"""
import random
from abc import ABC, abstractmethod
from typing import (
Any,
Callable,
Generic,
Literal,
Protocol,
Tuple,
TYPE_CHECKING,
TypeVar,
Union,
runtime_checkable,
)
T = TypeVar("T")
Tm = TypeVar("Tm")
X = TypeVar("X")
Xm = TypeVar("Xm")
@runtime_checkable
class Monad(Generic[T], Protocol):
""""A monad is a monoid in the category of endofunctors. What's the problem?"
Monads are a special kind of functor. A functor is a morphism between
objects of 1 or more categories. A morphism is a... y'know what, just look
up Bartosz Milewski on YouTube.
For the average Pythonista, a Monad is a kind of container that provides
methods for operating on the contained object(s) without pulling it out.
Lists are monads, for example, and its monadic operations are implemented
with `list()`, `list.extend()`, and `map()`.
This implementation makes `Monad` a protocol for 2 reasons: it better fits
the definition of a monad as a functor, and implementing it as an ABC caused
a headache with Liskov Substitution in concrete implementations.
"""
value: T
def wrap(self, value: T) -> "Monad[T]":
"""Wrap a value in the Monadic type.
Haskell calls this "return" in the context of monads, "pure" in the
context of functors. It may also be called "unit." Here, it is "wrap"
because its inverse is "unwrap."
"""
...
def unwrap(self: "Monad[T]") -> T:
"""Retrieve the value from the Monad"""
...
def fmap(self: "Monad[T]", f: Callable[[T], Tm]) -> "Monad[Tm]":
"""Apply a plain function to the wrapped value, returning a new Monad
object that contains the result.
For functions which take multiple arguments, use `functools.partial` to
set the additional arguments ahead of time or curry the function.
"""
...
def bind(self: "Monad[T]", f: Callable[[T], "Monad[Tm]"]) -> "Monad[Tm]":
"""Apply a monadic function to the wrapped value, returning the
function's output.
For functions which take multiple arguments, use `functools.partial` to
set the additional arguments ahead of time or curry the function.
"""
...
def flatten(self: "Monad[Monad[T]]") -> "Monad[T]":
"""Unwrap a monadic value from inside the monad."""
...
def join(self: "Monad[T]", other: "Monad[T]") -> "Monad[T]":
"""Combine the value of this monad with that of another monad containing
the same type, returning a new monad object.
The "flatten" and "join" operations are often treated the same in
literature on monads. The List type illustrates how these operations are
conceptually similar, but in Python can be operationally distinct:
```
list.extend <-> (self: List[T], other: Iterable[T]) -> List[T]
# And if we take the "list" of arguments as a list in itself, this is
# virtually equivalent.
<~> (deeplist: List[Iterable[T]]) -> List[T]
```
The second signature requires a bit of a jump, but the two operations do
accomplish roughly the same thing: turning a list of lists into a flat
list of values.
"""
...
class ResultAbc(Generic[T, X], ABC):
"""The Result Monad is used to great effect in FP-heavy languages like Rust
and pure FP languages like Haskell. It allows abstracting away some error
handling, resulting in cleaner code.
There are two variants, `Ok` and `Err`. The "variant" relationship is
captured with a Union type alias later; the purpose of this ABC is to both
define the interface for the programmer and to capture for type-checkers how
operations on the two types modify the contained value regardless of which
type is actually present at runtime.
"""
__slots__ = "value"
value: Union[T, X]
@abstractmethod
def bind(
self: "ResultAbc[T, X]", f: Callable[[T], "Result[Tm, X]"]
) -> "Result[Tm, X]":
...
@abstractmethod
def and_fmap(
self: "ResultAbc[T, X]", f: Callable[[T], Tm]
) -> "Result[Tm, X]":
"""Apply a plain function to the wrapped value of an `Ok` object and
return a new `Result`, or return an `Err` unmodified.
For functions which take multiple arguments, use `functools.partial` to
set the additional arguments ahead of time or curry the function.
"""
...
@abstractmethod
def and_bind(
self: "ResultAbc[T, X]", f: Callable[[T], "Result[Tm, X]"]
) -> "Result[Tm, X]":
"""Apply a monadic function to the value of an `Ok` object, or return an
`Err` unmodified.
For functions which take multiple arguments, use `functools.partial` to
set the additional arguments ahead of time or curry the function.
"""
...
@abstractmethod
def or_fmap(self: "ResultAbc[T, X]", f: Callable[[X], Xm]) -> "Result[T, Xm]":
"""Apply a plain function to the wrapped value of an `Err` object and
return a new `Err`, or return an `Ok` unmodified.
For functions which take multiple arguments, use `functools.partial` to
set the additional arguments ahead of time or curry the function.
"""
...
@abstractmethod
def or_bind(
self: "ResultAbc[T, X]", f: Callable[[X], "Result[T, Xm]"]
) -> "Result[T, Xm]":
"""Apply a monadic function to the value of an `Err` object, or return an
`Ok` unmodified.
Different from `or_fmap`, which will always return `Err` if called on an
`Err`, `or_bind` may return `Ok` if `f` returns `Ok`. This makes it
possible to recover (or "un-derail" in the railroad analogy) an error
condition.
For functions which take multiple arguments, use `functools.partial` to
set the additional arguments ahead of time or curry the function.
"""
...
def flatten(self: "ResultAbc[T, X]") -> "Result[T, X]":
"""Return a nested `Ok` or `Err` object. If the wrapped value is not
`Ok|Err`, the return is `self`.
"""
if isinstance(self, ResultAbc):
return self.unwrap() # type: ignore
else:
return self # type: ignore
class Ok(ResultAbc[T, Any]):
value: T
def __init__(self, value: T):
self.value = value
def __bool__(self) -> Literal[True]:
return True
def wrap(self: "Ok[T]", value: T) -> "Ok[T]":
self.value = value
return self
def unwrap(self: "Ok[T]") -> T:
return self.value
def fmap(
self: "Ok[T]", f: Callable[[T], Tm]
) -> "Result[Tm, Union[X, Exception]]":
try:
return Ok(f(self.value))
except Exception as e:
return Err(e)
and_fmap = fmap # type: ignore
def bind(self: "Ok[T]", f: Callable[[T], "Result[Tm, X]"]) -> "Result[Tm, X]":
return f(self.value)
and_bind = bind # type: ignore
def or_fmap(self: "Ok[T]", f: Callable[[X], Xm]) -> "Ok[T]":
return self
def or_bind(self: "Ok[T]", f: Callable[[X], "ResultAbc[T, Xm]"]) -> "Ok[T]":
return self
def join(self: "Ok[T]", other: "Ok[T]") -> "Ok[Tuple[T, T]]":
return Ok((self.value, other.value))
class Err(ResultAbc[Any, X]):
value: X
def __init__(self, value: X):
self.value = value
def wrap(self: "Err[X]", value: X) -> "Err[X]":
self.value = value
return self
def unwrap(self: "Err[X]") -> X:
return self.value
def fmap(self, f: Callable[..., Any]) -> "Err[X]":
return self
and_fmap = fmap # type: ignore
def bind(self: "Err[X]", f: Callable[[T], "Result[Tm, X]"]) -> "Err[X]":
return self
and_bind = bind # type: ignore
def or_bind(
self: "Err[X]", f: Callable[[X], "Result[T, Xm]"]
) -> "Result[T, Xm]":
return f(self.value)
def join(self: "Err[X]", other: "Err[X]") -> "Err[Tuple[X, X]]":
return Err((self.value, other.value))
def or_fmap(self: "Err[X]", f: Callable[[X], Xm]) -> "Err[Xm]":
try:
return Err(f(self.value))
except Exception as e:
return Err(e) # type: ignore
def __bool__(self) -> Literal[False]:
return False
Result = Union[Ok[T], Err[X]]
Result.__doc__ = """
This "tagged" union relies on the __bool__ implementations in the two types.
Being annotated with `Literal`, type-checkers can accurately narrow from
`Result` to either case with a simple `if/else`.
"""
def check_f(f: Callable[..., T], *a, **kw) -> Result[T, Exception]:
"""Wrap the result of a regular function with a `Result` type. This is the
ideal starting point for an operation that is to be carried out in the
monadic context, but is not itself monadic.
In Haskell, this might be the "liftm" operation. It's not implemented as a
method here for simplicity's sake.
"""
try:
return Ok(f(*a, **kw))
except Exception as e:
return Err(e)
if __name__ == "__main__":
# Mypy infers random.choice to return the common supertype--impressive.
# Pyright says nothing.
# This simulates not knowing at write-time what the result might be.
res: Result[int, Exception] = random.choice((Ok(1), Err(ZeroDivisionError())))
reveal_type(res) if TYPE_CHECKING else None
if res:
# The checker should understand res is an Ok on this path...
reveal_type(res) if TYPE_CHECKING else None
print("Succeeded")
res.and_fmap(lambda x: x + 2).and_fmap(float).unwrap()
else:
# but an Err on this one.
reveal_type(res) if TYPE_CHECKING else None
print("Failed")
res.or_fmap(str).unwrap()
# Shows an actual, if contrived, operation.
res2 = check_f(lambda x: 5).and_fmap(lambda x: x * x).or_fmap(str)
reveal_type(res2) if TYPE_CHECKING else None
# Prove that I fully implemented the Monad protocol for ResultAbc.
assert isinstance(res2, Monad)