-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathmain_centered.py
50 lines (41 loc) · 1.96 KB
/
main_centered.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# -*- coding: utf-8 -*-
import torch
import platform
from copy import deepcopy,copy
import torch.distributed as dist
from fedtorch.parameters import get_args
from fedtorch.comms.trainings.federated import (train_and_validate_federated_centered,
train_and_validate_apfl_centered,
train_and_validate_drfa_centered,
train_and_validate_afl_centered,
train_and_validate_perfedme_centered)
from fedtorch.nodes import ClientCentered, ServerCentered
def main(args):
"""Non-distributed training."""
# Create Clients and the Server
ClientNodes ={}
for i in range(args.num_workers):
if args.data in ['emnist', 'emnist_full','synthetic'] or i==0:
ClientNodes[i] = ClientCentered(args,i)
else:
ClientNodes[i] = ClientCentered(args,i, Partitioner=ClientNodes[0].Partitioner)
ServerNode = ServerCentered(ClientNodes[0].args,ClientNodes[0].model)
ServerNode.enable_grad(ClientNodes[0].train_loader)
# train and evaluate model.
if ServerNode.args.federated_drfa:
train_and_validate_drfa_centered(ClientNodes, ServerNode)
else:
if ServerNode.args.federated_type == 'apfl':
train_and_validate_apfl_centered(ClientNodes, ServerNode)
elif ServerNode.args.federated_type == 'perfedme':
train_and_validate_perfedme_centered(ClientNodes, ServerNode)
elif ServerNode.args.federated_type == 'afl':
train_and_validate_afl_centered(ClientNodes, ServerNode)
elif ServerNode.args.federated_type in ['fedavg','scaffold','fedgate','qsparse','fedprox','qffl','perfedavg']:
train_and_validate_federated_centered(ClientNodes, ServerNode)
else:
raise NotImplementedError
return
if __name__ == '__main__':
args = get_args()
main(args)