-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathevaluation.py
122 lines (106 loc) · 5.55 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Copyright 2018 Giorgos Kordopatis-Zilos. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Implementation of the evaluation process based on CC_WEB_VIDEO dataset.
"""
from __future__ import division
from __future__ import print_function
import argparse
from utils import *
from model import DNN
from tqdm import tqdm
from scipy.spatial.distance import cdist
def calculate_similarities(queries, features):
"""
Function that generates video triplets from CC_WEB_VIDEO.
Args:
queries: indexes of the query videos
features: global features of the videos in CC_WEB_VIDEO
Returns:
similarities: the similarities of each query with the videos in the dataset
"""
similarities = []
dist = np.nan_to_num(cdist(features[queries], features, metric='euclidean'))
for i, v in enumerate(queries):
sim = np.round(1 - dist[i] / dist.max(), decimals=6)
similarities += [[(s, sim[s]) for s in sim.argsort()[::-1] if not np.isnan(sim[s])]]
return similarities
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-es', '--evaluation_set', type=str, required=True,
help='Path to the .npy file that contains the global '
'video vectors of the CC_WEB_VIDEO dataset')
parser.add_argument('-m', '--model_path', type=str, required=True,
help='Path to load the trained DML model')
parser.add_argument('-f', '--fusion', type=str, default='Early',
help='Processed dataset. Options: Early and Late. Default: Early')
parser.add_argument('-ef', '--evaluation_features', type=str,
help='Paths to the .npy files that contains the feature vectors '
'of the videos in the CC_WEB_VIDEO dataset. Each line of the '
'file have to contain the video id (name of the video file) '
'and the full path to the corresponding .npy file, separated '
'by a tab character (\\t)')
parser.add_argument('-pl', '--positive_labels', type=str, default='ESLMV',
help='Labels in CC_WEB_VIDEO datasets that '
'considered posetive. Default=\'ESLMV\'')
args = vars(parser.parse_args())
print('Loading data...')
cc_dataset = pk.load(open('datasets/cc_web_video.pickle', 'rb'))
cc_features = load_features(args['evaluation_set'])
print('Loading model...')
model = DNN(cc_features.shape[1],
args['model_path'],
load_model=True,
trainable=False)
if args['fusion'].lower() == 'early':
print('Fusion type: Early')
print('Extract video embeddings...')
cc_embeddings = model.embeddings(cc_features)
else:
print('Fusion type: Late')
print('Extract video embeddings...')
assert args['evaluation_features'] is not None, \
'Argument \'--evaluation_features\' must be provided for Late fusion'
feature_files = load_feature_files(args['evaluation_features'])
cc_embeddings = np.zeros((len(cc_dataset['index']), model.embedding_dim))
for i, video_id in enumerate(tqdm(cc_dataset['index'])):
if video_id in feature_files:
features = load_features(feature_files[video_id])
embeddings = model.embeddings(normalize(features))
embeddings = embeddings.mean(0, keepdims=True)
cc_embeddings[i] = normalize(embeddings, zero_mean=False)
print('\nEvaluation set file: ', args['evaluation_set'])
print('Path to DML model: ', args['model_path'])
print('Positive labels: ', args['positive_labels'])
print('\nEvaluation Results')
print('==================')
similarities = calculate_similarities(cc_dataset['queries'], cc_embeddings)
baseline_similarities = calculate_similarities(cc_dataset['queries'], cc_features)
mAP_dml, pr_curve_dml = evaluate(cc_dataset['ground_truth'], similarities,
positive_labels=args['positive_labels'], all_videos=False)
mAP_base, pr_curve_base = evaluate(cc_dataset['ground_truth'], baseline_similarities,
positive_labels=args['positive_labels'], all_videos=False)
print('CC_WEB_VIDEO')
print('baseline mAP: ', mAP_base)
print('DML mAP: ', mAP_dml)
plot_pr_curve(pr_curve_dml, pr_curve_base, 'CC_WEB_VIDEO')
mAP_dml, pr_curve_dml = evaluate(cc_dataset['ground_truth'], similarities,
positive_labels=args['positive_labels'], all_videos=True)
mAP_base, pr_curve_base = evaluate(cc_dataset['ground_truth'], baseline_similarities,
positive_labels=args['positive_labels'], all_videos=True)
print('\nCC_WEB_VIDEO*')
print('baseline mAP: ', mAP_base)
print('DML mAP: ', mAP_dml)
plot_pr_curve(pr_curve_dml, pr_curve_base, 'CC_WEB_VIDEO*')