-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathevaluation.py
162 lines (142 loc) · 6.96 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Copyright 2019 Giorgos Kordopatis-Zilos. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Implementation of the FIVR evaluation process
"""
from __future__ import division
from __future__ import print_function
import json
import argparse
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
from argparse import RawTextHelpFormatter
from future.utils import viewitems, lrange
from sklearn.metrics import precision_recall_curve
def plot_pr_curve(pr_curve):
"""
Function that plots the interpolated PR-curve.
Args:
pr_curve: the values of precision for each recall step
"""
plt.figure(figsize=(16, 9))
plt.plot(np.arange(0.0, 1.05, 0.05),
pr_curve, color='r', marker='o', linewidth=3, markersize=10)
plt.grid(True, linestyle='dotted')
plt.xlabel('Recall', color='k', fontsize=27)
plt.ylabel('Precision', color='k', fontsize=27)
plt.yticks(color='k', fontsize=20)
plt.xticks(color='k', fontsize=20)
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.tight_layout()
plt.show()
def evaluate(annotations, results, relevant_labels, dataset, quiet):
"""
Calculate of mAP and interpolated PR-curve based on the FIVR evaluation process.
Args:
annotations: the annotation labels for each query
results: the similarities of each query with the videos in the dataset
relevant_labels: labels that are considered positives
dataset: video ids contained in the dataset
Returns:
mAP: the mean Average Precision
ps_curve: the values of the PR-curve
"""
pr, mAP = [], []
iterations = viewitems(annotations) if not quiet else tqdm(viewitems(annotations))
for query, gt_sets in iterations:
if query not in results: print('WARNING: Query {} is missing from the result file'.format(query)); continue
if query not in dataset: print('WARNING: Query {} is not in the dataset'.format(query)); continue
# set of relevant videos
query_gt = set(sum([gt_sets[label] for label in relevant_labels if label in gt_sets], []))
query_gt = query_gt.intersection(dataset)
if not query_gt: print('WARNING: Empty annotation set for query {}'.format(query)); continue
# calculation of mean Average Precision (Eq. 6)
i, ri, s = 0.0, 0, 0.0
y_target, y_score = [], []
for video, sim in sorted(viewitems(results[query]), key=lambda x: x[1], reverse=True):
if video != query and video in dataset:
y_score.append(sim)
y_target.append(1.0 if video in query_gt else 0.0)
ri += 1
if video in query_gt:
i += 1.0
s += i / ri
mAP.append(s / len(query_gt))
if not quiet:
print('Query:{}\t\tAP={:.4f}'.format(query, s / len(query_gt)))
# add the dataset videos that are missing from the result file
missing = len(query_gt) - y_target.count(1)
y_target += [1.0 for _ in lrange(missing)] # add 1. for the relevant videos
y_target += [0.0 for _ in lrange(len(dataset) - len(y_target))] # add 0. for the irrelevant videos
y_score += [0.0 for _ in lrange(len(dataset) - len(y_score))]
# calculation of interpolate PR-curve (Eq. 5)
precision, recall, thresholds = precision_recall_curve(y_target, y_score)
p = []
for i in lrange(20, -1, -1):
idx = np.where((recall >= i * 0.05))[0]
p.append(np.max(precision[idx]))
pr.append(p)
return mAP, np.mean(pr, axis=0)[::-1]
if __name__ == "__main__":
parser = argparse.ArgumentParser(formatter_class=RawTextHelpFormatter)
parser.add_argument('-r', '--result_file',
required=True,
help='File of where the results are stored. It must be in JSON format')
parser.add_argument('-rl', '--relevant_labels',
default='ND,DS',
help='Labels of the videos that considered relevant depending on the retrieval task'
'\nDSVR: ND,DS\nCSVR: ND,DS,CS\nISVR: ND,DS,CS,IS')
parser.add_argument('-a', '--annotations_file',
default='dataset/annotation.json',
help='File that contains the video annotations of the FIVR-200K dataset')
parser.add_argument('-d', '--dataset_ids',
default='dataset/youtube_ids.txt',
help='File that contains the Youtube IDs of the videos in FIVR-200K dataset')
parser.add_argument('-e', '--export_file',
default='mAP_PRcurve_points.csv',
help='File where the results will be stored')
parser.add_argument('-s', '--save_results',
action='store_true',
help='Flag that indicated whether the results will be stored')
parser.add_argument('-q', '--quiet',
action='store_true',
help='Flag that indicated whether the results per query will be printed')
parser.add_argument('-p', '--plot_pr_curve',
action='store_true',
help='Flag that indicated whether the PR-curve will be displayed')
args = parser.parse_args()
# load all the necessary files
with open(args.result_file, 'r') as f:
if not args.quiet: print('Loading results from file:', args.result_file)
results = json.load(f)
with open(args.annotations_file, 'r') as f:
if not args.quiet: print('Loading annotations from file:', args.annotations_file)
annotations = json.load(f)
dataset = set(np.loadtxt(args.dataset_ids, dtype=str))
relevant_labels = args.relevant_labels.split(',')
# run the evaluation process
mAP, pr_curve = evaluate(annotations, results, relevant_labels, dataset, args.quiet)
# report the results
print('==========================================')
print('Total queries: {}\t\tmAP={:.4f}'.format(len(mAP), np.mean(mAP)))
if args.plot_pr_curve: plot_pr_curve(pr_curve)
# save the numeric values in a csv file
if args.save_results:
with open(args.export_file, 'w') as f:
f.write('mAP,{}\n\n'.format(np.mean(mAP)))
f.write('Recall,{}\n'.format(','.join(map(str, np.arange(0.0, 1.05, 0.05)))))
f.write('Precision,{}'.format(','.join(map(str, pr_curve))))