-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
83 lines (61 loc) · 2.23 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"Based on https://github.com/MIPT-Oulu/Oulu-MIPT-ML-Seminar-2018/tree/master/Tutorial_2/codes"
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import numpy as np
from tqdm import tqdm
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
cudnn.benchmark = True
def train_epoch(epoch, net, optimizer, train_loader, criterion):
net.train(True)
running_loss = 0.0
n_batches = len(train_loader)
pbar = tqdm(total=n_batches)
for i, (images, jsw_des, labels) in enumerate(train_loader):
optimizer.zero_grad()
# forward + backward + optimize
images = images.to(device)
jsw_des = jsw_des.to(device)
labels = labels.float().to(device)
outputs = net(images, jsw_des).squeeze()
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
pbar.set_description('Train loss: %.3f / loss %.3f' % (running_loss / (i + 1), loss.item()))
pbar.update()
pbar.close()
return running_loss / n_batches
def validate_epoch(net, val_loader, criterion):
probs_lst = []
ground_truth = []
net.eval()
running_loss = 0.0
n_batches = len(val_loader)
sm = nn.Sigmoid()
for i, (images, jsw, labels) in enumerate(val_loader):
images = images.to(device)
labels = labels.float().to(device)
jsw = jsw.to(device)
outputs = net(images,jsw).squeeze()
loss = criterion(outputs, labels)
targets = labels.cpu().numpy()
preds = sm(outputs).data.cpu().numpy()
probs_lst.append(preds)
ground_truth.append(targets)
running_loss += loss.item()
probs_lst = np.hstack(probs_lst)
ground_truth = np.hstack(ground_truth)
return running_loss / n_batches, probs_lst, ground_truth
def adjust_learning_rate(optimizer, epoch, lr_min, init_lr, lr_drop):
"""
Decreases the initial LR by 5 every drop_step epochs.
Conv layers learn slower if specified in the optimizer.
"""
lr = init_lr * (0.4 ** (epoch // lr_drop))
if lr < lr_min:
lr = lr_min
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return optimizer, lr