-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbilinear_layers.py
99 lines (82 loc) · 3.1 KB
/
bilinear_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# from https://github.com/DennisLeoUTS/improved-bilinear-pooling
import torch
import torch.nn as nn
from torch.autograd import Function
from torch.autograd import Variable
def sqrt_newton_schulz(A, numIters):
batchSize = A.shape[0]
dim = A.shape[1]
normA = A.mul(A).sum(dim=1).sum(dim=1).sqrt()
Y = A.div(normA.view(batchSize, 1, 1).expand_as(A))
I = torch.eye(dim,dim).view(1, dim, dim).repeat(batchSize,1,1).type(torch.cuda.FloatTensor)
Z = torch.eye(dim,dim).view(1, dim, dim).repeat(batchSize,1,1).type(torch.cuda.FloatTensor)
for i in range(numIters):
T = 0.5*(3.0*I - Z.bmm(Y))
Y = Y.bmm(T)
Z = T.bmm(Z)
sA = Y*torch.sqrt(normA).view(batchSize, 1, 1).expand_as(A)
return sA
def lyap_newton_schulz(z, dldz, numIters):
batchSize = z.shape[0]
dim = z.shape[1]
normz = z.mul(z).sum(dim=1).sum(dim=1).sqrt()
a = z.div(normz.view(batchSize, 1, 1).expand_as(z))
I = torch.eye(dim,dim).view(1, dim, dim).repeat(batchSize,1,1).type(torch.cuda.FloatTensor)
q = dldz.div(normz.view(batchSize, 1, 1).expand_as(z))
for i in range(numIters):
q = 0.5*(q.bmm(3.0*I - a.bmm(a)) - a.transpose(1, 2).bmm(a.transpose(1,2).bmm(q) - q.bmm(a)) )
a = 0.5*a.bmm(3.0*I - a.bmm(a))
dlda = 0.5*q
return dlda
class matrix_sqrt(Function):
@staticmethod
def forward(ctx, input):
output = sqrt_newton_schulz(input, 10)
ctx.save_for_backward(output)
return output
@staticmethod
def backward(ctx, grad_output):
output = ctx.saved_tensors[0]
grad_input = lyap_newton_schulz(output, grad_output, 10)
return grad_input
class full_bilinear_pooling(Function):
@staticmethod
def forward(ctx, input):
N = input.size(0)
input_reverse = input.transpose(1,2)
output = torch.zeros((N,input.size()[1],input.size()[1])).cuda()
ctx.save_for_backward(input)
for i in range(N):
output[i] = torch.mm(input[i], input_reverse[i])
return output
@staticmethod
def backward(ctx, grad_output):
input = ctx.saved_tensors[0]
grad_input = torch.zeros(input.size()).cuda()
N = input.size(0)
for i in range(N):
grad_input[i] = torch.mm(grad_output[i], input[i])
return grad_input
class sign_sqrt(Function):
@staticmethod
def forward(ctx, input):
output = torch.sign(input) * torch.sqrt(torch.abs(input))
# output = torch.sqrt(input.abs())
ctx.save_for_backward(output)
return output
@staticmethod
def backward(ctx, grad_output):
output = ctx.saved_tensors[0]
grad_input = torch.div(grad_output, ((torch.abs(output)+0.03)*2.))
return grad_input
class bilinear_module(nn.Module):
def __init__(self):
super(bilinear_module, self).__init__()
self.bilinear = full_bilinear_pooling.apply
self.sqrt = sign_sqrt.apply
# self.norm = l2_norm.apply
def forward(self, input):
bilinear1 = self.bilinear(input)
sqrt2 = self.sqrt(bilinear1)
norm3 = self.norm(sqrt2)
return norm3