-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbalancedata.py
57 lines (43 loc) · 1.22 KB
/
balancedata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import pandas as pd
from collections import Counter
from random import shuffle
import cv2
train_data = np.load('training_data_v2.npy', allow_pickle = True)
df = pd.DataFrame(train_data)
#print(df.head())
print(Counter(df[1].apply(str)))
#for data in train_data:
# choice = data[1]
# print(choice)
forwards = []
frontleft = []
frontright = []
nokey = []
#shuffle(train_data)
i = 0
for data in train_data:
img = data[0]
choice = data[1]
if choice == [0,1,0]:
forwards.append([img,choice])
elif choice == [0, 1, 1]:
frontright.append([img, choice])
elif choice == [1, 1, 0]:
frontleft.append([img, choice])
for data in train_data:
img = data[0]
choice = data[1]
if choice ==[0, 0, 0]:
nokey.append([img, choice])
forwards = forwards[:len(nokey)]
frontleft = frontleft[:len(nokey)]
frontright = frontright[:len(nokey)]
new_train = forwards + frontleft + frontright + nokey
shuffle(new_train)
np.save('training_data_v3.npy', new_train)
new_train = np.load('training_data_v3.npy', allow_pickle= True)
i = 0
df = pd.DataFrame(new_train)
#print(df.head())
print(Counter(df[1].apply(str)))