forked from fact-project/aict-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
86 lines (82 loc) · 3.59 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from setuptools import setup, find_packages
from os import path
import re
d = path.abspath(path.dirname(__file__))
with open(path.join(d, 'README.md'), encoding='utf-8') as f:
long_description = f.read()
with open('aict_tools/__init__.py', 'r') as f:
version = re.search(r'__version__ = \'(\d+[.]\d+[.]\d+)\'', f.read()).groups()[0]
extras_require = {
'pmml': [
'sklearn2pmml<0.57',
'jpmml_evaluator>=0.2.2',
],
'onnx': ['skl2onnx', 'onnxmltools', 'onnxruntime~=1.0'],
'cta': ['ctapipe'],
}
extras_require['all'] = list({dep for deps in extras_require.values() for dep in deps})
setup(
name='aict_tools',
version=version,
description='Artificial Intelligence for Imaging Atmospheric Cherenkov Telescopes',
long_description=long_description,
long_description_content_type='text/markdown',
url='https://github.com/fact-project/aict-tools',
author='Kai Brügge, Maximilian Nöthe, Jens Buss',
author_email='[email protected]',
license='MIT',
packages=find_packages(),
setup_requires=['pytest-runner'],
tests_require=['pytest'],
install_requires=[
'astropy', # in anaconda
'click', # in anaconda
'h5py', # in anaconda
'joblib', # in anaconda
'matplotlib>=2.0', # in anaconda
'numexpr', # in anaconda
'numpy', # in anaconda
'pandas', # in anaconda
'pyfact>=0.16.0',
'python-dateutil', # in anaconda
'pytz', # in anaconda
'ruamel.yaml>=0.15.0', # in anaconda
'scikit-learn>=0.21.0', # See PEP 440, compatible releases
'tqdm',
],
extras_require=extras_require,
zip_safe=False,
entry_points={
'console_scripts': [
'aict_train_separation_model = aict_tools.scripts.train_separation_model:main',
'aict_apply_separation_model = aict_tools.scripts.apply_separation_model:main',
'aict_train_energy_regressor = aict_tools.scripts.train_energy_regressor:main',
'aict_apply_energy_regressor = aict_tools.scripts.apply_energy_regressor:main',
'aict_train_disp_regressor = aict_tools.scripts.train_disp_regressor:main',
'aict_apply_disp_regressor = aict_tools.scripts.apply_disp_regressor:main',
'aict_split_data = aict_tools.scripts.split_data:main',
'aict_plot_separator_performance = aict_tools.scripts.plot_separator_performance:main',
'aict_plot_regressor_performance = aict_tools.scripts.plot_regressor_performance:main',
'aict_plot_disp_performance = aict_tools.scripts.plot_disp_performance:main',
'aict_apply_cuts = aict_tools.scripts.apply_cuts:main',
'aict_convert_pandas2h5py = aict_tools.scripts.convert_pandas2h5py:main',
'fact_to_dl3 = aict_tools.scripts.fact_to_dl3:main',
],
},
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: MIT License',
'Natural Language :: English',
'Operating System :: OS Independent',
'Programming Language :: Python',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3 :: Only',
'Topic :: Scientific/Engineering :: Astronomy',
'Topic :: Scientific/Engineering :: Physics',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Scientific/Engineering :: Information Analysis',
],
)