forked from fact-project/aict-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_separator.yaml
54 lines (46 loc) · 1.38 KB
/
config_separator.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#Configuration file for model training and application.
# seed for the random number generators, to make things reproducible
seed: 0
true_energy_column: corsika_event_header_total_energy
separator:
#the classifier to use
classifier : |
ensemble.RandomForestClassifier(
n_estimators=30,
max_features='sqrt',
n_jobs=-1,
max_depth=15,
criterion='entropy',
)
# randomly sample the data if you dont want to use the whole set
n_background: 500
n_signal: 500
# define the number of cross validations to perform
n_cross_validations : 5
# Define the name of the output column for the positive class.
# default is gamma_prediction
output_name: gammaness
# Define the name of the column that contains the name of the telescope in case you're working
# with mulitple telescopes and telescope types
# telescope_type_key: telescope:name
features:
- size
- length
- width
- num_islands
- leakage1
- leakage2
- skewness_long
- skewness_trans
- concentration_cog
- concentration_core
# Generate some features using pd.DataFrame.eval
# List all columns that have to be read from the input files
# in `needed_columns`.
# features must be a mapping of feature name -> expression
feature_generation:
needed_columns:
- width
- length
features:
area: width * length * @pi