forked from CLUEbenchmark/CLUENER2020
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscore.py
55 lines (48 loc) · 1.59 KB
/
score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#!/usr/bin/python
# coding:utf8
"""
@author: Cong Yu
@time: 2020-01-09 22:53
"""
import json
def get_f1_score_label(pre_lines, gold_lines, label="organization"):
"""
打分函数
"""
# pre_lines = [json.loads(line.strip()) for line in open(pre_file) if line.strip()]
# gold_lines = [json.loads(line.strip()) for line in open(gold_file) if line.strip()]
TP = 0
FP = 0
FN = 0
for pre, gold in zip(pre_lines, gold_lines):
pre = pre["label"].get(label, {}).keys()
gold = gold["label"].get(label, {}).keys()
for i in pre:
if i in gold:
TP += 1
else:
FP += 1
for i in gold:
if i not in pre:
FN += 1
print(TP, FP, FN)
p = TP / (TP + FP)
r = TP / (TP + FN)
f = 2 * p * r / (p + r)
print(p, r, f)
return f
def get_f1_score(pre_file="ner_predict.json", gold_file="data/thuctc_valid.json"):
pre_lines = [json.loads(line.strip()) for line in open(pre_file) if line.strip()]
gold_lines = [json.loads(line.strip()) for line in open(gold_file) if line.strip()]
f_score = {}
labels = ['address', 'book', 'company', 'game', 'government', 'movie', 'name', 'organization', 'position', 'scene']
sum = 0
for label in labels:
f = get_f1_score_label(pre_lines, gold_lines, label=label)
f_score[label] = f
sum += f
avg = sum / len(labels)
return f_score, avg
if __name__ == "__main__":
f_score, avg = get_f1_score(pre_file="ner_predict_large.json", gold_file="data/thuctc_valid.json")
print(f_score, avg)