-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcommon.cxx
1066 lines (1015 loc) · 29.5 KB
/
common.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/** \addtogroup examples
* @{
* \defgroup helper functions for multigrid
* @{
* \brief NTF algorithms based on projected gradient methods
*/
#include "common.h"
//#define ERR_REPORT
void vec2str(vector<int> vec, string &seq_out) {
char seq[vec.size() + 2];
seq[vec.size() + 1] = '\0';
seq[vec.size()] = '*';
for (int i = 0; i < vec.size(); i++) {
seq[i] = 'a' + vec[i];
}
seq_out = seq;
}
void mttkrp_map_DT(map<string, Tensor<>> &mttkrp_map,
map<string, string> &parent, map<string, string> &sibling,
Tensor<> &V, Matrix<> *W, string args, World &dw) {
int K = W[0].ncol;
if (mttkrp_map.find(args) != mttkrp_map.end())
return;
char seq_w[3];
seq_w[2] = '\0';
seq_w[1] = '*';
if (args.length() == V.order / 2 || args.length() == V.order / 2 + 1) {
Tensor<> V_front = V;
Tensor<> V_temp;
/* initial condition
*/
char seq[V_front.order + 1], seq_f[V_front.order + 1];
seq[V_front.order] = '\0';
char_string_copy(seq, 0, parent[args], 0, parent[args].length());
seq_f[V_front.order] = '\0';
seq_w[0] = sibling[args][0];
// make seq_f
int index_start = int(sibling[args][0] - 'a');
char_string_copy(seq_f, 0, parent[args], 0, index_start);
char_string_copy(seq_f, index_start, parent[args], index_start + 1,
V.order - index_start - 1);
seq_f[V.order - 1] = '*';
// build len for V_temp
int lens_V[V.order];
for (int m = 0; m < index_start; m++) {
lens_V[m] = V.lens[m];
}
for (int m = index_start + 1; m < V.order; m++) {
lens_V[m - 1] = V.lens[m];
}
lens_V[V.order - 1] = K;
V_temp = Tensor<>(V.order, lens_V, dw);
// contraction
V_temp[seq_f] = V_front[seq] * W[index_start][seq_w];
V_front = V_temp;
/* loops
*/
for (int j = 1; j < sibling[args].length(); j++) { // iterate on [ab]
// make seq
seq[V_front.order] = '\0';
strncpy(seq, seq_f, strlen(seq_f));
// make seq_w
seq_w[0] = sibling[args][j];
// make seq_f
seq_f[V_front.order - 1] = '\0';
seq_f[V_front.order - 2] = '*';
char_string_copy(seq_f, 0, parent[args], 0, index_start);
char_string_copy(seq_f, index_start, parent[args], index_start + j + 1,
V.order - index_start - j - 1);
// build len for V_temp
int lens_V[V.order - j];
for (int m = 0; m < index_start; m++) {
lens_V[m] = V.lens[m];
}
for (int m = index_start + j + 1; m < V.order; m++) {
lens_V[m - j - 1] = V.lens[m];
}
lens_V[V.order - j - 1] = K;
V_temp = Tensor<>(V.order - j, lens_V, dw);
// contraction
V_temp[seq_f] = V_front[seq] * W[index_start + j][seq_w];
V_front = V_temp;
}
mttkrp_map[args] = V_front;
return;
}
if (mttkrp_map.find(parent[args]) == mttkrp_map.end()) {
mttkrp_map_DT(mttkrp_map, parent, sibling, V, W, parent[args], dw);
}
/* Else
*/
Tensor<> V_temp;
Tensor<> V_front = mttkrp_map[parent[args]];
Tensor<> V_parent = mttkrp_map[parent[args]];
int index_start = int(sibling[args][0] - parent[args][0]);
// make seq_f
char seq[V_front.order + 1];
char seq_f[V_front.order + 1];
seq_f[V_front.order] = '\0';
seq_f[V_front.order - 1] = '*';
char_string_copy(seq_f, 0, parent[args], 0, parent[args].length());
/* loops */
for (int j = 0; j < sibling[args].length(); j++) { // iterate on [ab]
// make seq
seq[V_front.order] = '\0';
strncpy(seq, seq_f, strlen(seq_f));
// make seq_w
seq_w[0] = sibling[args][j];
// make seq_f
seq_f[V_front.order - 1] = '\0';
seq_f[V_front.order - 2] = '*';
char_string_copy(seq_f, 0, parent[args], 0, index_start);
char_string_copy(seq_f, index_start, parent[args], index_start + j + 1,
V_parent.order - index_start - j - 2);
// build len for V_temp
int lens_V[V_parent.order - j - 1];
for (int m = 0; m < index_start; m++) {
lens_V[m] = V_parent.lens[m];
}
for (int m = index_start + j + 1; m < V_parent.order; m++) {
lens_V[m - j - 1] = V_parent.lens[m];
}
lens_V[V_parent.order - j - 2] = K;
V_temp = Tensor<>(V_parent.order - j - 1, lens_V, dw);
// contraction
V_temp[seq_f] = V_front[seq] * W[seq_w[0] - 'a'][seq_w];
V_front = V_temp;
}
mttkrp_map[args] = V_front;
return;
}
void build_V(Tensor<> &V, Matrix<> *W, int order, World &dw) {
Timer tbuild_V("build_V");
tbuild_V.start();
char chars[] = {'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r',
's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '\0'};
// int lens_V[2];
// lens_V[0] = W[0].nrow;
// lens_V[1] = W[0].ncol;
V = W[0];
char seq_W[3] = {'i', '*', '\0'};
// char seq = {'i','*','\0'};
for (int i = 1; i < order - 1; i++) {
// build V_temp
int lens_V[i + 2];
for (int j = 0; j < i + 1; j++) {
lens_V[j] = W[j].nrow;
}
lens_V[i + 1] = W[0].ncol;
Tensor<> V_temp = Tensor<>(i + 2, lens_V, dw);
// seq_temp
char seq_temp[i + 3];
seq_temp[i + 2] = '\0';
seq_temp[i + 1] = '*';
for (int j = 0; j < i + 1; j++) {
seq_temp[j] = chars[j];
}
// seq
char seq[i + 2];
seq[i + 1] = '\0';
seq[i] = '*';
for (int j = 0; j < i; j++) {
seq[j] = chars[j];
}
// seq_W
seq_W[0] = chars[i];
V_temp[seq_temp] = V[seq] * W[i][seq_W];
V = V_temp;
// char seq[i+3];
// for (int j=0; j<i+3; j++) {
// seq[j] = seq_temp[j];
// }
}
// build V_temp
int lens_V[order];
for (int j = 0; j < order; j++) {
lens_V[j] = W[j].nrow;
}
Tensor<> V_temp = Tensor<>(order, lens_V, dw);
char seq_temp[order + 1];
char seq[order + 2];
seq_temp[order] = '\0';
seq_temp[order] = '\0';
for (int j = 0; j < order; j++) {
seq_temp[j] = chars[j];
seq[j] = chars[j];
}
seq[order - 1] = '*';
seq_W[0] = chars[order - 1];
V_temp[seq_temp] = V[seq] * W[order - 1][seq_W];
V = V_temp;
tbuild_V.stop();
}
void swap_char(char *seq, int i, int j) {
char temp = seq[j];
seq[j] = seq[i];
seq[i] = temp;
}
Matrix<> unroll_tensor_contraction(Tensor<> &T, int i) {
char chars[] = {'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r',
's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '\0'};
char arg[T.order + 1];
char arg2[T.order + 1];
for (int i = 0; i < T.order; i++) {
arg[i] = chars[i];
arg2[i] = chars[i];
}
arg[T.order] = '\0';
arg2[T.order] = '\0';
Matrix<> MTM = Matrix<>(T.lens[i], T.lens[i]);
arg[i] = '^';
arg2[i] = '&';
MTM["^&"] = T[arg] * T[arg2];
return MTM;
}
void Construct_Dimension_Tree(map<string, string> &parent,
map<string, string> &sibling, int start,
int end) {
if (end == start)
return;
if (end == start + 1) {
char args_parent[3];
args_parent[2] = '\0';
args_parent[1] = 'a' + end;
args_parent[0] = 'a' + start;
char args[2];
char args2[2];
args[1] = '\0';
args2[1] = '\0';
args[0] = 'a' + start;
args2[0] = 'a' + end;
parent[args] = args_parent;
parent[args2] = args_parent;
sibling[args] = args2;
sibling[args2] = args;
return;
}
char args_parent[end - start + 2];
args_parent[end - start + 1] = '\0';
for (int i = start; i <= end; i++) {
args_parent[i - start] = 'a' + i;
}
int middle = (start + end) / 2;
char args[middle - start + 2];
args[middle - start + 1] = '\0';
for (int i = start; i <= middle; i++) {
args[i - start] = 'a' + i;
}
char args2[end - middle + 1];
args2[end - middle] = '\0';
for (int i = middle + 1; i <= end; i++) {
args2[i - middle - 1] = 'a' + i;
}
parent[args] = args_parent;
sibling[args] = args2;
Construct_Dimension_Tree(parent, sibling, start, middle);
sibling[args2] = args;
parent[args2] = args_parent;
Construct_Dimension_Tree(parent, sibling, middle + 1, end);
return;
}
void unit_tensor(Tensor<> &V, int N, int s, World &dw) {
int64_t my_tot_nnz = s * s;
int64_t *inds = (int64_t *)malloc(sizeof(int64_t) * my_tot_nnz);
double *vals = (double *)malloc(sizeof(double) * my_tot_nnz);
int ii = 0;
for (int64_t column = 0; column < s; column++)
for (int64_t row = 0; row < s; row++) {
inds[ii] = column * s * s + row * s + (row + column * (s - 1)) % s;
if (dw.rank == 0)
vals[ii] = 1.;
else
vals[ii] = 0.;
ii++;
}
V.write(my_tot_nnz, inds, vals);
free(inds);
free(vals);
}
void Gram_Schmidt(Vector<> &A, Vector<> &B) {
double normA = B["i"] * B["i"];
double prod = A["i"] * B["i"];
A["i"] -= prod / normA * B["i"];
}
double collinearity(Vector<> v1, Vector<> v2) {
double ip = v1["i"] * v2["i"];
double nm1 = v1.norm2();
double nm2 = v2.norm2();
return ip / (nm1 * nm2);
}
void build_V_vec(Tensor<> &V, Vector<> *W, int order, World &dw) {
char chars[] = {'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r',
's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '\0'};
// int lens_V[2];
// lens_V[0] = W[0].nrow;
// lens_V[1] = W[0].ncol;
V = W[0];
char seq_W[2] = {'i', '\0'};
// char seq = {'i','*','\0'};
for (int i = 1; i < order - 1; i++) {
// build V_temp
int lens_V[i + 1];
for (int j = 0; j < i + 1; j++) {
lens_V[j] = W[j].len;
}
Tensor<> V_temp = Tensor<>(i + 1, lens_V, dw);
// seq_temp
char seq_temp[i + 2];
seq_temp[i + 1] = '\0';
for (int j = 0; j < i + 1; j++) {
seq_temp[j] = chars[j];
}
// seq
char seq[i + 1];
seq[i] = '\0';
for (int j = 0; j < i; j++) {
seq[j] = chars[j];
}
// seq_W
seq_W[0] = chars[i];
V_temp[seq_temp] = V[seq] * W[i][seq_W];
V = V_temp;
// char seq[i+3];
// for (int j=0; j<i+3; j++) {
// seq[j] = seq_temp[j];
// }
}
// build V_temp
int lens_V[order];
for (int j = 0; j < order; j++) {
lens_V[j] = W[j].len;
}
Tensor<> V_temp = Tensor<>(order, lens_V, dw);
char seq_temp[order + 1];
char seq[order + 1];
seq_temp[order] = '\0';
seq_temp[order] = '\0';
for (int j = 0; j < order; j++) {
seq_temp[j] = chars[j];
seq[j] = chars[j];
}
seq_W[0] = chars[order - 1];
V_temp[seq_temp] = V[seq] * W[order - 1][seq_W];
V = V_temp;
}
Tensor<> Gen_collinearity(int *lens, int dim, int R, double col_min,
double col_max, World &dw) {
// build chars
char chars[] = {'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r',
's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '\0'};
char arg[dim + 1];
arg[dim] = '\0';
for (int i = 0; i < dim; i++) {
arg[i] = chars[i];
}
// build vectors
Vector<> **vec = new Vector<> *[R];
// range over different modes
for (int i = 0; i < R; i++) {
vec[i] = new Vector<>[dim];
// range over different ranks
for (int j = 0; j < dim; j++) {
vec[i][j] = Vector<>(lens[j]);
vec[i][j].fill_random(0, 1);
}
}
for (int j = 0; j < dim; j++) {
for (int i = 1; i < R; i++) {
bool condition = false;
while (condition == false) {
int k = 0;
for (; k < i; k++) {
double col = collinearity(vec[i][j], vec[k][j]);
if (dw.rank == 0)
cout << col << endl;
if (col < col_min || col > col_max) {
if (dw.rank == 0)
cout << "resellect" << endl;
break;
}
}
if (k == i)
condition = true;
else
vec[i][j].fill_random(0, 1);
}
}
}
// Vector<> lambda = Vector<>[R];
// lambda.fill_random(0.2,0.8);
//
Tensor<> X(dim, lens, dw);
for (int i = 0; i < R; i++) {
double lambda_;
lambda_ = 0.2 + 0.6 / R * (i + 1); // rand()%600 *1./1000 + 0.2;
if (dw.rank == 0)
cout << "lambda=" << lambda_ << endl;
Tensor<> X_sub;
build_V_vec(X_sub, vec[i], dim, dw);
X[arg] = X[arg] + lambda_ * X_sub[arg];
}
for (int i = 0; i < R; i++) {
delete[] vec[i];
}
delete[] vec;
return X;
}
// /**
// * \brief Identity tensor: I x I x I x ...
// */
// Tensor<> identitiy_tensor(int N,
// int s,
// World & dw) {
// int d = N/2;
// Matrix<> ident = Matrix<>(s,s,SP,dw);
// ident["ii"] = 1.;
// int *lens = new int[N];
// for (int i=0; i<N; i++) lens[i]=s;
// Tensor<> I(N,true,lens,dw);
// Tensor<> * I_temp = new Tensor<>;
// (*I_temp) = ident;
// for (int i=1; i<d; i++) {
// Tensor<> I_temp2 = (*I_temp);
// // lens
// int *lens_temp = new int[2*i+2];
// for (int jj=0; jj<2*i+2; jj++) lens_temp[jj]=s;
// // I_temp
// I_temp = new Tensor<>(2*i+2,true,lens_temp,dw);
// //build char
// char seq_I2[2*i+1]; seq_I2[2*i] = '\0';
// char seq_I1[2*i+3]; seq_I1[2*i+2] = '\0';
// for (int jj=0; jj<(2*i+2); jj++) seq_I1[jj] = 'a'+jj;
// for (int jj=2; jj<(2*i+2); jj++) seq_I2[jj-2] = 'a'+jj;
// (*I_temp)[seq_I1] = I_temp2[seq_I2]*ident["ab"];
// }
// I = (*I_temp);
// return I;
// }
/**
* \brief Identity tensor: I x I x I x ...
*/
Tensor<> identitiy_tensor(int N, int s, World &dw) {
int d = N / 2;
// Matrix<> ident = Matrix<>(s,s,SP,dw);
Matrix<> ident = Matrix<>(s, s, dw);
ident["ii"] = 1.;
int lens[N];
for (int i = 0; i < N; i++)
lens[i] = s;
Tensor<> I(N, false, lens, dw);
Tensor<> I_temp = ident;
for (int i = 1; i < d; i++) {
Tensor<> I_temp2 = I_temp;
// lens
int lens_temp[2 * i + 2];
for (int jj = 0; jj < 2 * i + 2; jj++)
lens_temp[jj] = s;
// I_temp
I_temp = Tensor<>(2 * i + 2, false, lens_temp, dw);
// build char
char seq_I2[2 * i + 1];
seq_I2[2 * i] = '\0';
char seq_I1[2 * i + 3];
seq_I1[2 * i + 2] = '\0';
for (int jj = 0; jj < (2 * i + 2); jj++)
seq_I1[jj] = 'a' + jj;
for (int jj = 2; jj < (2 * i + 2); jj++)
seq_I2[jj - 2] = 'a' + jj;
I_temp[seq_I1] = I_temp2[seq_I2] * ident["ab"];
}
I = (I_temp);
return I;
}
/**
* \brief laplacian tensor:
* 3d example : I x D x I + D x I x I + I x I x D
*/
void random_laplacian_tensor(Tensor<> &V, int N, int s, bool sparse_V,
World &dw) {
int d = N / 2;
// build D matrix
// Matrix<> D = Matrix<>(s,s,SP,dw);
Matrix<> D = Matrix<>(s, s, dw);
int64_t my_tot_nnz = s - 1;
int64_t *inds = (int64_t *)malloc(sizeof(int64_t) * my_tot_nnz);
double *vals = (double *)malloc(sizeof(double) * my_tot_nnz);
for (int64_t row = 0; row < my_tot_nnz; row++) {
inds[row] = row * s + row + 1;
if (dw.rank == 0)
vals[row] = -1.;
else
vals[row] = 0.;
}
D.write(my_tot_nnz, inds, vals);
free(inds);
free(vals);
D["ij"] += 2. * D["ji"];
D["ii"] = 2.;
// build char for seq
char seq[N + 1];
seq[N] = '\0';
for (int jj = 0; jj < N; jj++)
seq[jj] = 'a' + jj;
/* k=1 */
// initialize
Tensor<> I2 = identitiy_tensor(N - 2, s, dw);
// build char
char seq_D[3] = "ab";
char seq_I2[N - 1];
seq_I2[N - 2] = '\0';
for (int jj = 2; jj < N; jj++)
seq_I2[jj - 2] = 'a' + jj;
// contract
V[seq] += D[seq_D] * I2[seq_I2];
// k=d
// initialize
Tensor<> I1 = identitiy_tensor(N - 2, s, dw);
// build char
char seq_I1[N - 1];
seq_I1[N - 2] = '\0';
for (int jj = 0; jj < N - 2; jj++)
seq_I1[jj] = 'a' + jj;
for (int jj = N - 2; jj < N; jj++)
seq_D[jj - (N - 2)] = 'a' + jj;
// contract
V[seq] += I1[seq_I1] * D[seq_D];
// k in [2,d-1]
for (int k = 2; k <= d - 1; k++) {
Tensor<> I1 = identitiy_tensor(2 * (k - 1), s, dw);
Tensor<> I2 = identitiy_tensor(2 * (d - k), s, dw);
// build char
char seq_I1[2 * (k - 1) + 1];
seq_I1[2 * (k - 1)] = '\0';
char seq_I2[2 * (d - k) + 1];
seq_I2[2 * (d - k)] = '\0';
for (int jj = 0; jj < 2 * (k - 1); jj++)
seq_I1[jj] = 'a' + jj;
for (int jj = 2 * (k - 1); jj < 2 * k; jj++)
seq_D[jj - 2 * (k - 1)] = 'a' + jj;
for (int jj = 2 * k; jj < 2 * d; jj++)
seq_I2[jj - 2 * k] = 'a' + jj;
// contract
V[seq] += I1[seq_I1] * D[seq_D] * I2[seq_I2];
}
}
/**
* \brief laplacian tensor:
* 3d example : I x D x I + D x I x I + I x I x D
*/
void laplacian_tensor(Tensor<> &V, int N, int s, bool sparse_V, World &dw) {
int d = N / 2;
// build D matrix
// Matrix<> D = Matrix<>(s,s,SP,dw);
Matrix<> D = Matrix<>(s, s, dw);
int64_t my_tot_nnz = s - 1;
int64_t *inds = (int64_t *)malloc(sizeof(int64_t) * my_tot_nnz);
double *vals = (double *)malloc(sizeof(double) * my_tot_nnz);
for (int64_t row = 0; row < my_tot_nnz; row++) {
inds[row] = row * s + row + 1;
if (dw.rank == 0)
vals[row] = -1.;
else
vals[row] = 0.;
}
D.write(my_tot_nnz, inds, vals);
free(inds);
free(vals);
D["ij"] += D["ji"];
D["ii"] = 2.;
// build char for seq
char seq[N + 1];
seq[N] = '\0';
for (int jj = 0; jj < N; jj++)
seq[jj] = 'a' + jj;
/* k=1 */
// initialize
Tensor<> I2 = identitiy_tensor(N - 2, s, dw);
// build char
char seq_D[3] = "ab";
char seq_I2[N - 1];
seq_I2[N - 2] = '\0';
for (int jj = 2; jj < N; jj++)
seq_I2[jj - 2] = 'a' + jj;
// contract
V[seq] += D[seq_D] * I2[seq_I2];
// k=d
// initialize
Tensor<> I1 = identitiy_tensor(N - 2, s, dw);
// build char
char seq_I1[N - 1];
seq_I1[N - 2] = '\0';
for (int jj = 0; jj < N - 2; jj++)
seq_I1[jj] = 'a' + jj;
for (int jj = N - 2; jj < N; jj++)
seq_D[jj - (N - 2)] = 'a' + jj;
// contract
V[seq] += I1[seq_I1] * D[seq_D];
// k in [2,d-1]
for (int k = 2; k <= d - 1; k++) {
Tensor<> I1 = identitiy_tensor(2 * (k - 1), s, dw);
Tensor<> I2 = identitiy_tensor(2 * (d - k), s, dw);
// build char
char seq_I1[2 * (k - 1) + 1];
seq_I1[2 * (k - 1)] = '\0';
char seq_I2[2 * (d - k) + 1];
seq_I2[2 * (d - k)] = '\0';
for (int jj = 0; jj < 2 * (k - 1); jj++)
seq_I1[jj] = 'a' + jj;
for (int jj = 2 * (k - 1); jj < 2 * k; jj++)
seq_D[jj - 2 * (k - 1)] = 'a' + jj;
for (int jj = 2 * k; jj < 2 * d; jj++)
seq_I2[jj - 2 * k] = 'a' + jj;
// contract
V[seq] += I1[seq_I1] * D[seq_D] * I2[seq_I2];
}
}
void Normalize(Matrix<> *W, int N, World &dw) {
/*
int R = W[0].ncol;
double norm[N][R];
double norm_sum[R];
for (int i=0; i<R; i++) {
norm_sum[i] = 1.;
Matrix<> transform(R,1,dw);
int64_t inds_t[1];
double vals_t[1];
inds_t[0] = i;
if(dw.rank==0) vals_t[0] = 1.;
else vals_t[0] = 0;
transform.write(1,inds_t,vals_t);
for (int j=0; j<N; j++) {
Matrix<> W_part(W[j].nrow,1,dw);
W_part["ij"] = W[j]["ik"]*transform["kj"];
norm[j][i] = W_part.norm2();
norm_sum[i] *= norm[j][i];
}
norm_sum[i] = pow(norm_sum[i],1./N);
}
// update the W
for (int j=0; j<N; j++) {
Matrix<> transform(R,R,dw);
int64_t inds_t[R];
double vals_t[R];
for (int jj=0; jj<R; jj++) {
inds_t[jj] = jj*R+jj;
if(dw.rank==0) vals_t[jj] = norm_sum[jj]/norm[j][jj];
else vals_t[0] = 0;
}
transform.write(R,inds_t,vals_t);
W[j]["ij"] = W[j]["ik"]*transform["kj"];
}
*/
double norm = 1;
for (int i = 0; i < N; i++) {
norm = norm * W[i].norm2();
}
norm = pow(norm, 1.0 / N);
for (int i = 0; i < N; i++) {
double norm_Wi = W[i].norm2();
W[i]["ij"] = norm / norm_Wi * W[i]["ij"];
}
}
void randomized_svd(Matrix<> &A, Matrix<> &U, Vector<> &s, Matrix<> &VT2, int r,
int iter) {
int n = A.ncol;
Matrix<> X = Matrix<>(n, r);
X.fill_random(0, 1);
Matrix<> Q, R;
X.qr(Q, R);
for (int i = 0; i < iter; i++) {
X["jr"] = A["ij"] * A["il"] * Q["lr"];
X.qr(Q, R);
}
Matrix<> VT;
Matrix<> B = Matrix<>(A.nrow, r);
B["ij"] = A["ik"] * Q["kj"];
B.svd(U, s, VT, r);
VT2 = Matrix<>(r, n);
VT2["ij"] = VT["ik"] * Q["jk"];
}
void SVD_solve(Matrix<> &M, Matrix<> &W, Matrix<> &S) {
Timer tSVD_solve("SVD_solve");
tSVD_solve.start();
// Perform SVD
Matrix<> U, VT;
Vector<> s;
S.svd(U, s, VT, S.ncol);
Matrix<> S_reverse(S);
// reverse
Transform<> inv([](double &d) { d = 1. / d; });
inv(s["i"]);
S_reverse["ij"] = VT["ki"] * s["k"] * U["jk"];
W["ij"] = M["ik"] * S_reverse["kj"];
tSVD_solve.stop();
}
void cholesky_solve(Matrix<> &M, Matrix<> &W, Matrix<> &S) {
Timer tCholesky_solve("Cholesky_solve");
tCholesky_solve.start();
Matrix<> L, T;
S.cholesky(L);
T = L;
T["ik"] = L["ij"] * L["kj"];
M.solve_tri(L, T, true, false, true);
T.solve_tri(L, W, true, false, false);
tCholesky_solve.stop();
}
void SVD_solve_mod(Matrix<> &M, Matrix<> &W, Matrix<> &W_init, Matrix<> &dW,
Matrix<> &S, double ratio_step) {
Timer tSVD_solve_mod("SVD_solve");
tSVD_solve_mod.start();
// Perform SVD
Matrix<> U, VT;
Vector<> s;
S.svd(U, s, VT, S.ncol);
Matrix<> S_reverse(S);
// reverse
Transform<> inv([](double &d) { d = 1. / d; });
inv(s["i"]);
S_reverse["ij"] = VT["ki"] * s["k"] * U["jk"];
W["ij"] = M["ik"] * S_reverse["kj"];
dW["ij"] = ratio_step * (W["ij"] - W_init["ij"]);
if (ratio_step != 1.) {
W["ij"] = W_init["ij"] + dW["ij"];
}
tSVD_solve_mod.stop();
}
void matrixDot(Matrix<> &result, Matrix<> &matrix1, Matrix<> &matrix2) {
result = Matrix<>(matrix1.nrow, matrix2.ncol);
result["ij"] = matrix1["ik"] * matrix2["kj"];
}
/** Compute the rank 1 update vector on A(n).
A*gamma = M
*/
void get_rankR_update_cholesky(int R, Matrix<> &xU, Vector<> &xS, Matrix<> &xVT,
Matrix<> &M, Matrix<> &A, Matrix<> &gamma,
bool random) {
Matrix<> L, X;
gamma.cholesky(L);
Matrix<> rhs;
matrixDot(rhs, A, gamma);
rhs["ij"] = M["ij"] - rhs["ij"];
rhs.solve_tri(L, X, true, false, true);
if (random) {
randomized_svd(X, xU, xS, xVT, R, 1);
} else {
X.svd(xU, xS, xVT, R);
}
xVT.solve_tri(L, xVT, true, false, false);
}
void get_rankR_update_svd(int R, Matrix<> &xU, Vector<> &xS, Matrix<> &xVT,
Matrix<> &M, Matrix<> &A, Matrix<> &gamma,
bool random) {
Matrix<> rhs;
matrixDot(rhs, A, gamma);
rhs["ij"] = M["ij"] - rhs["ij"];
Matrix<> U, VT;
Vector<> S;
gamma.svd(U, S, VT, gamma.ncol);
// S = 1./S**.5
Transform<> sqrtinv([](double &d) { d = 1. / sqrt(d); });
sqrtinv(S["i"]);
// X = RHS @ U
// 0.*X.i("ij") << S.i("j") * X.i("ij")
Matrix<> X(rhs.nrow, rhs.ncol);
X["ik"] = S["k"] * rhs["ij"] * U["jk"];
//[xU,xS,xVT]=ctf.svd(X,r)
if (random) {
randomized_svd(X, xU, xS, xVT, R, 1);
} else {
X.svd(xU, xS, xVT, R);
}
xVT["ik"] = xVT["ij"] * S["j"] * VT["jk"];
}
/** Perform rank R update on V and A
*/
void apply_rankR_update(Matrix<> &U, Vector<> &sigma, Matrix<> &VT, Matrix<> &A,
Tensor<> &V, Tensor<> *cached_tensor, int mode,
World &dw) {
// A["ij"] = A["ij"]+U["ik"]*sigma["k"]*VT["kj"];
char seq[V.order + 1];
seq[V.order] = '\0';
char seq2[V.order + 1];
seq2[V.order] = '\0';
for (int i = 0; i < V.order; i++) {
seq[i] = 'a' + i;
seq2[i] = 'a' + i;
}
seq2[mode] = 'a' + V.order;
char seq_VT[] = {char('a' + V.order + 1), seq2[mode], '\0'};
char seq_U[] = {seq[mode], char('a' + V.order + 1), '\0'};
char seq_sigma[] = {char('a' + V.order + 1), '\0'};
U["ij"] = U["ij"] * sigma["j"];
(*cached_tensor)[seq2] =
(*cached_tensor)[seq2] + VT[seq_VT] * U[seq_U] * V[seq];
A["ij"] = U["ik"] * VT["kj"];
}
// Gauss-Seidel relaxation for A*Gamma = F
void Gauss_Seidel(Matrix<> &A, Matrix<> &F, Matrix<> &Gamma, int maxits) {
// extract lower triangular part of Gamma into nonsymmetric matrix
// gives a directed adjacency matrix P
Matrix<> Gamma_SH(Gamma.nrow, Gamma.ncol, SH);
Gamma_SH["ij"] = Gamma["ij"];
Gamma_SH["ij"] = 0.5 * Gamma_SH["ij"];
int nosym[] = {NS, NS};
Tensor<> G_Ut(Gamma_SH, nosym);
Matrix<> G_U(G_Ut);
Matrix<> G_L(Gamma);
G_L["ij"] = Gamma["ij"] - G_U["ij"];
// reverse G_L
Matrix<> U, VT;
Vector<> p;
G_L.svd(U, p, VT, G_L.ncol);
Matrix<> GL_reverse(G_L);
// reverse
Transform<> inv([](double &d) { d = 1. / d; });
inv(p["i"]);
GL_reverse["ij"] = VT["ki"] * p["k"] * U["jk"];
// iteration
for (int i = 0; i < maxits; i++) {
// A = A+(P\(F-A*Gamma)T)T;
Matrix<> M(F.nrow, F.ncol);
M["ij"] = F["ij"] - A["ik"] * Gamma["kj"];
A["ij"] = A["ij"] + M["ik"] * GL_reverse["jk"];
// A["ji"] = GL_reverse["ik"]*(F["jk"]-G_U["kl"]*A["jl"]);
}
}
void fold_unfold(Tensor<> &X, Tensor<> &Y) {
int64_t *inds_X;
double *vals_X;
int64_t n_X;
// if global index ordering is preserved between the two tensors, we can fold
// simply
X.read_local(&n_X, &inds_X, &vals_X);
Y.write(n_X, inds_X, vals_X);
delete[] vals_X;
free(inds_X);
}
/**
* \brief To calculate the Khatri-Rao Product of W[i]
* H_T: output solution
* W[i]: input matrix
* index: sequence for W[i] to be used
* lens_H: lens of each dimension in H_T
*/
void KhatriRaoProduct(Tensor<> &H_T, Matrix<> *W, int *index, int *lens_H,
World &dw) {
int K = H_T.lens[H_T.order - 1];
Tensor<> H_front = W[index[0]];
Tensor<> H_temp;
for (int j = 1; j < H_T.order - 1; j++) { // iterate on [ab]
// make the char
char seq[H_front.order + 1], seq_f[H_front.order + 2];
seq[H_front.order] = '\0';
seq_f[H_front.order + 1] = '\0';
for (int jj = 0; jj < (H_front.order - 1); jj++) {
seq[jj] = 'a' + jj;
seq_f[jj] = 'a' + jj;
}
seq[H_front.order - 1] = 'k';
seq_f[H_front.order - 1] = 'j';
seq_f[H_front.order] = 'k';
// build len for H_temp
int lens_W[j + 2];
for (int m = 0; m < j + 1; m++) {
lens_W[m] = lens_H[m];
}
lens_W[j + 1] = K;
H_temp = Tensor<>(j + 2, lens_W, dw);
// contraction
H_temp[seq_f] = H_front[seq] * W[index[j]]["jk"];
H_front = H_temp;
}
H_T = H_front;
return;
}
/**
* \brief To calculate the Khatri-Rao Product of W[i] and contract with V
* M: output solution
* V: input tensor
* W[i]: input matrixs
* index: sequence for W[i] to be used
* lens_H: lens of each dimension in H_T
* M["dk"] = V["abcd"]*W1["ak"]*W2["bk"]*W3["ck"]
*/
void KhatriRao_contract(Matrix<> &M, Tensor<> &V, Matrix<> *W, int *index,
int *lens_H, World &dw) {
int K = W[0].ncol;
Tensor<> V_front = V;
Tensor<> V_temp;
/* initial condition
*/
char seq[V_front.order + 1], seq_f[V_front.order + 1], seq_w[3];
seq[V_front.order] = '\0';
seq_f[V_front.order] = '\0';
seq_w[2] = '\0';
// make seq_w
seq_w[0] = 'a' + index[0];
seq_w[1] = 'k';
// make seq
for (int jj = 0; jj < V.order; jj++) {
seq[jj] = 'a' + jj;
}
// make seq_f
for (int jj = 1; jj < V.order; jj++) {
seq_f[jj - 1] = 'a' + index[jj];
}
seq_f[V.order - 1] = 'k';
// build len for V_temp
int lens_V[V.order];
for (int m = 0; m < V.order - 1; m++) {
lens_V[m] = lens_H[m];
}
lens_V[V.order - 1] = K;
V_temp = Tensor<>(V.order, lens_V, dw);
// contraction
V_temp[seq_f] = V_front[seq] * W[index[0]][seq_w];
V_front = V_temp;
/* loops
*/
for (int j = 1; j < V.order - 1; j++) { // iterate on [ab]
// make seq
char seq[V_front.order + 1];
seq[V_front.order] = '\0';
for (int jj = j; jj < V.order; jj++) {
seq[jj - j] = 'a' + index[jj];
}
seq[V_front.order - 1] = 'k';
// make seq_w
seq_w[0] = 'a' + index[j];
// make seq_f
char seq_f[V_front.order];
seq_f[V_front.order - 1] = '\0';
for (int jj = j + 1; jj < V.order; jj++) {
seq_f[jj - j - 1] = 'a' + index[jj];
}
seq_f[V_front.order - 2] = 'k';
// build len for V_temp
int lens_V[V.order - j];
for (int m = j; m < V.order - 1; m++) {
lens_V[m - j] = lens_H[m];
}
lens_V[V.order - j - 1] = K;
V_temp = Tensor<>(V.order - j, lens_V, dw);
// contraction
V_temp[seq_f] = V_front[seq] * W[index[j]][seq_w];
V_front = V_temp;
}
M["ij"] = V_front["ij"];
return;
}
/**
* \brief subproblem grad_W[i]