-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathexperiment_script_gated.py
126 lines (117 loc) · 4.05 KB
/
experiment_script_gated.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import subprocess
import os
import sys
import torch
from itertools import cycle
import numpy as np
algorithms = ['er_compositional', 'ewc_compositional', 'van_compositional']
algorithms += ['er_joint', 'ewc_joint', 'van_joint']
algorithms += ['er_nocomponents', 'ewc_nocomponents', 'van_nocomponents']
algorithms += ['er_dynamic', 'ewc_dynamic', 'van_dynamic']
algorithms += ['fm_compositional', 'fm_dynamic']
datasets = ['CIFAR', 'Omniglot']
datasets += ['MNIST', 'Fashion', 'CUB']
num_epochs = 100
mini_batch = 32
update_frequency = 100
init_mode = 'random'
results_root = 'results/gated'
num_gpus = torch.cuda.device_count()
gpu_use_total = np.zeros(num_gpus)
cuda_device_dict = {}
counter = 0
process_gpu_use = {}
did_not_start = 0
did_not_finish = 0
finished = 0
for i in range(10):
for d in datasets:
if d == 'MNIST':
num_tasks = 10
size = 64
num_layers = 4
init_tasks = 4
architecture = 'mlp_gated'
gpu_use = 20
elif d == 'Fashion':
num_tasks = 10
size = 64
num_layers = 4
init_tasks = 4
architecture = 'mlp_gated'
gpu_use = 20
elif d == 'CIFAR':
num_tasks = 20
size = 50
num_layers = 4
init_tasks = 4
architecture = 'cnn_gated'
gpu_use = 25
elif d == 'CUB':
num_tasks = 20
size = 256
num_layers = 4
init_tasks = 4
architecture = 'mlp_gated'
gpu_use = 20
elif d == 'Omniglot':
num_tasks = 50
size = 53
num_layers = 4
init_tasks = 4
architecture = 'cnn_gated'
gpu_use = 25
for a in algorithms:
ewc_lambda = 1e-3
cuda_device = counter % num_gpus
while np.all(gpu_use_total + gpu_use > 100):
for p in cycle(process_gpu_use):
try:
p.wait(1)
gpu_use_remove = process_gpu_use[p]
gpu_use_total[cuda_device_dict[p]] -= gpu_use_remove
del process_gpu_use[p]
del cuda_device_dict[p]
break
except subprocess.TimeoutExpired:
pass
cuda_device = np.argmin(gpu_use_total)
results_path = os.path.join(results_root, d, a, 'seed_{}'.format(i))
print(results_path + ': ', end='')
if not os.path.isdir(results_path):
print('Did not start')
did_not_start += 1
else:
completed_tasks = len([name for name in os.listdir(results_path) if os.path.isdir(os.path.join(results_path, name))])
if completed_tasks != num_tasks:
print('Did not finish', end='')
did_not_finish += 1
else:
print('Finished')
finished += 1
continue
my_env = os.environ.copy()
my_env['CUDA_VISIBLE_DEVICES'] = str(cuda_device)
args = ['python', 'lifelong_experiment.py',
'-T', str(num_tasks),
'-d', d,
'-e', str(num_epochs),
'-b', str(mini_batch),
'-f', str(update_frequency),
'--lambda', str(ewc_lambda),
'-s', str(size),
'-l', str(num_layers),
'-k', str(init_tasks),
'-i', init_mode,
'-arc', architecture,
'-alg', a,
'-n', str(1),
'-r', results_root,
'--initial_seed', str(i)]
p = subprocess.Popen(args, env=my_env)
process_gpu_use[p] = gpu_use
gpu_use_total[cuda_device] += gpu_use
counter += 1
cuda_device_dict[p] = cuda_device
print(cuda_device)
print(did_not_start, did_not_finish, finished)