-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathattention.py
357 lines (270 loc) · 11.2 KB
/
attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch import optim
import torch.nn.functional as F
import unicodedata, string, re, random, time, math
class Config():
def __init__(self):
self.data_path = "../data/cmn-eng/cmn.txt" # 数据放在 /data 目录下
self.use_gpu = True
self.hidden_size = 128
self.encoder_lr = 5*1e-4
self.decoder_lr = 5*1e-4
self.train_num = 150000 # 训练数据集的数目
self.print_epoch = 10000
self.MAX_Len = 15
config = Config()
SOS_token = 0
EOS_token = 1
class Lang():
def __init__(self, name):
self.name = name
self.word2index = {}
self.index2word = {0: "SOS", 1: "EOS"}
self.word2count = {}
self.n_words = 2 # Count SOS and EOS
def addSentence(self, sentence):
if self.name == "Chinese":
for word in sentence:
self.addWord(word)
else:
for word in sentence.split(' '):
self.addWord(word)
def addWord(self, word):
if word not in self.word2index:
self.word2index[word] = self.n_words
self.word2count[word] = 1
self.index2word[self.n_words] = word
self.n_words += 1
else:
self.word2count[word] += 1
def unicodeToAscii(s):
return ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn'
)
# Lowercase, trim, and remove non-letter characters
def normalizeString(s):
s = unicodeToAscii(s.lower().strip())
s = re.sub(r"([.!?])", r" \1", s)
s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
return s
def readLangs(lang1, lang2, pairs_file, reverse=False):
print("Reading lines...")
# Read the file and split into lines
lines = open(pairs_file, encoding='utf-8').read().strip().split('\n')
# Split every line into pairs and normalize
pairs = []
for l in lines:
temp = l.split('\t')
eng_unit = normalizeString(temp[0])
chinese_unit = temp[1]
pairs.append([eng_unit, chinese_unit])
# Reverse pairs, make Lang instances
if reverse:
pairs = [list(reversed(p)) for p in pairs]
input_lang = Lang(lang2)
output_lang = Lang(lang1)
else:
input_lang = Lang(lang1)
output_lang = Lang(lang2)
return input_lang, output_lang, pairs
MAX_LENGTH = config.MAX_Len # 长度大于15的我们统统舍弃
eng_prefixes = (
"i am ", "i m ",
"he is", "he s ",
"she is", "she s",
"you are", "you re ",
"we are", "we re ",
"they are", "they re ",
"i", "he", 'you', 'she', 'we',
'they', 'it'
)
def filterPair(p):
return len(p[0].split(' ')) < MAX_LENGTH and \
len(p[1]) < MAX_LENGTH and \
p[0].startswith(eng_prefixes)
def filterPairs(pairs):
return [pair for pair in pairs if filterPair(pair)]
def prepareData(lang1, lang2, pairs_file, reverse=False):
input_lang, output_lang, pairs = readLangs(lang1, lang2, pairs_file, reverse)
print("Read %s sentence pairs" % len(pairs))
pairs = filterPairs(pairs)
print("Trimmed to %s sentence pairs" % len(pairs))
print("Counting words...")
for pair in pairs:
input_lang.addSentence(pair[0])
output_lang.addSentence(pair[1])
print("Counted words:")
print(input_lang.name, "字典的大小为", str(input_lang.n_words))
print(output_lang.name, "字典的大小为", str(output_lang.n_words))
return input_lang, output_lang, pairs
input_lang, output_lang, pairs = prepareData('Eng', 'Chinese', config.data_path)
print(random.choice(pairs))
def indexesFromSentence(lang, sentence):
if lang.name == "Chinese":
return [lang.word2index[word] for word in sentence]
else:
return [lang.word2index[word] for word in sentence.split(' ')]
def variableFromSentence(lang, sentence, use_gpu):
indexes = indexesFromSentence(lang, sentence)
indexes.append(EOS_token)
result = Variable(torch.LongTensor(indexes).view(-1, 1)) # seq*1
if use_gpu:
return result.cuda()
else:
return result
def variablesFromPair(pair, use_gpu):
input_variable = variableFromSentence(input_lang, pair[0], use_gpu)
target_variable = variableFromSentence(output_lang, pair[1], use_gpu)
return (input_variable, target_variable)
# 随机获取2个训练数据集, 这里我们依旧不用进行 batch 处理,下一章节 attention 机制中,我们再进行 batch 处理
example_pairs = [variablesFromPair(random.choice(pairs), config.use_gpu)
for i in range(2)]
print(example_pairs)
class Encoder(nn.Module):
def __init__(self, input_size, hidden_size):
super(Encoder, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True)
def forward(self, x, hidden):
embedded = self.embedding(x).view(1, x.size()[0], -1)
output = embedded # batch*seq*feature
output, hidden = self.gru(output, hidden)
return output, hidden
def initHidden(self, use_gpu):
result = Variable(torch.zeros(1, 1, self.hidden_size))
if use_gpu:
return result.cuda()
else:
return result
class AttentionDecoder(nn.Module):
def __init__(self, hidden_size, output_size, dropout_p=0.1, max_length=MAX_LENGTH):
super(AttentionDecoder, self).__init__()
self.hidden_size = hidden_size
self.dropout_p = dropout_p
self.max_length = max_length
self.embedding = nn.Embedding(output_size, hidden_size)
# attention 机制
self.attn = nn.Sequential(
nn.Linear(self.hidden_size * 2, self.max_length),
nn.Tanh(),
nn.Linear(self.max_length, 1)
)
# 结合之后的值
self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)
# drop out 防止过拟合
self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True)
self.out = nn.Linear(hidden_size, output_size)
self.softmax = nn.LogSoftmax()
def forward(self, x, hidden, encoder_outputs):
"""
x: 1*1
hidden: 1*1*embed_size
encoder_outputs: 1*seq_len*embed_size
"""
cur_input_data = self.embedding(x).view(1, 1, -1) # 1*1*embed_size
cur_seq_len = encoder_outputs.size()[1]
hidden_broadcast = hidden.expand(1, cur_seq_len, self.hidden_size)
# concate 操作根据 hidden 和 encoder_outputs 来求出当前context环境中的权重
encoder_outputs_and_hiddens = torch.cat((encoder_outputs, hidden_broadcast), dim=2)
# 计算 attention weights
attn_weights = F.softmax(
self.attn(encoder_outputs_and_hiddens)) # size: 1 * seq_len * 1
decoder_context = torch.bmm(attn_weights.view(1, 1, -1), encoder_outputs) # size: 1*1*embed_size
# 把 context 和 input 结合起来
input_and_context = torch.cat((cur_input_data, decoder_context), dim=2) # size: 1*1*(embed_size+embed_size)
concat_input = self.attn_combine(input_and_context) # size: 1*1*embed_size
output, hidden = self.gru(concat_input, hidden)
output = self.softmax(self.out(output[0]))
return output, hidden, attn_weights
def initHidden(self, use_gpu):
result = Variable(torch.zeros(1, 1, self.hidden_size))
if use_gpu:
return result.cuda()
else:
return result
# 实例化模型
encoder = Encoder(input_lang.n_words, config.hidden_size)
encoder = encoder.cuda() if config.use_gpu else encoder
attention_decoder = AttentionDecoder(config.hidden_size, input_lang.n_words)
attention_decoder = attention_decoder.cuda() if config.use_gpu else attention_decoder
# 定义优化器
encoder_optimizer = optim.Adam(encoder.parameters(), lr=config.encoder_lr)
decoder_optimizer = optim.Adam(attention_decoder.parameters(), lr=config.decoder_lr)
# 定义损失函数
fn_loss = nn.NLLLoss()
training_pairs = [variablesFromPair(random.choice(pairs), config.use_gpu)
for i in range(config.train_num)]
# 开始训练
for iter in range(1, config.train_num+1):
training_pair = training_pairs[iter - 1]
input_variable = training_pair[0] # seq_len * 1
target_variable = training_pair[1] # seq_len * 1
loss = 0
# 因为有 dropout, 所以我们需要加上 train()
encoder.train()
attention_decoder.train()
# 训练过程
encoder_hidden = encoder.initHidden(config.use_gpu)
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
input_length = input_variable.size()[0]
target_length = target_variable.size()[0]
# 传入 encoder
encoder_output, encoder_hidden = encoder(input_variable, encoder_hidden)
# decoder 起始
decoder_input = Variable(torch.LongTensor([[SOS_token]]))
decoder_input = decoder_input.cuda() if config.use_gpu else decoder_input
decoder_hidden = encoder_hidden
for di in range(target_length):
decoder_output, decoder_hidden, decoder_attention = attention_decoder(decoder_input, decoder_hidden, encoder_output)
targ = target_variable[di]
loss += fn_loss(decoder_output, targ)
decoder_input = targ
# 反向求导
loss.backward()
# 更新梯度
encoder_optimizer.step()
decoder_optimizer.step()
print_loss = loss.data[0] / target_length
if iter % config.print_epoch == 0:
print("loss is: %.4f" % (print_loss))
def sampling(encoder, decoder):
# 测试模式
encoder.eval()
decoder.eval()
# 随机选择一个句子
pair = random.choice(pairs)
print('>', pair[0])
print('=', pair[1])
# 扔进模型中,进行翻译
input_variable = variableFromSentence(input_lang, pair[0], config.use_gpu)
input_length = input_variable.size()[0]
encoder_hidden = encoder.initHidden(config.use_gpu)
encoder_output, encoder_hidden = encoder(input_variable, encoder_hidden)
decoder_input = Variable(torch.LongTensor([[SOS_token]]))
decoder_input = decoder_input.cuda() if config.use_gpu else decoder_input
decoder_hidden = encoder_hidden
decoded_words = []
for di in range(config.MAX_Len):
decoder_output, decoder_hidden, decoder_attention = decoder(decoder_input, decoder_hidden, encoder_output)
topv, topi = decoder_output.data.topk(1)
ni = topi[0][0]
if ni == EOS_token:
decoded_words.append('<EOS>')
break
else:
decoded_words.append(output_lang.index2word[ni])
# 把当前的输出当做输入
decoder_input = Variable(torch.LongTensor([ni]))
decoder_input = decoder_input.cuda() if config.use_gpu else decoder_input
# 对 decoded_words 进行连接,输出结果
output_sentence = ' '.join(decoded_words)
print('<', output_sentence)
print('')
for i in range(10):
sampling(encoder, attention_decoder)