-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathss_save_dyn.m
394 lines (324 loc) · 15.3 KB
/
ss_save_dyn.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
function ss_save_dyn(g,rf,ang,thk, isodelay, format, fspec, a_angs, root_fname, pulse_num)
% SS_SAVE - Save spectral-spatial pulse
% Uses Chuck Cunningham's format for GE systems, and creates associated
% .dat-file
% Pulse parameters saved in header for Varian and Bruker files
%
% ss_save_dyn(g,rf,ang,thk, format, fspec, a_angs, root_fname, pulse_num)
%
% g - in G/cm
% rf - in G
% ang - flip angle in radians
% thk - thickness in cm
% isodelay (optional) - delay from in-phase point to end of pulse (GE
% definition)
% format (optional) - 'GE' (default), 'Varian', 'Bruker'
% fspec (optional) - frequency bands (Hz) to write in file
% a_angs (optional) - band amplidutes (radians) to write in file
% root_fname - root file name (no prompting)
% pulse_num - pulse number
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Spectral-Spatial RF Pulse Design for MRI and MRSI MATLAB Package
%
% Authors: Adam B. Kerr and Peder E. Z. Larson
%
% (c)2007-2011 Board of Trustees, Leland Stanford Junior University and
% The Regents of the University of California.
% All Rights Reserved.
%
% Please see the Copyright_Information and README files included with this
% package. All works derived from this package must be properly cited.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ss_globals;
if (nargin < 5) || isempty(isodelay)
isodelay = length(rf)*SS_TS/ 2;
end
if (nargin < 6) || isempty(format)
format = 'GE';
end
switch format,
case 'GE'
% force even number of samples due to some GE sequences having
% issues loading odd number of samples
if rem(length(rf),2)
rf = [rf(:); 0];
g = [g(:); 0];
end
case 'Varian'
case 'Bruker'
otherwise
error(sprintf(['Format save type of: %s not' ...
' recognized'], format));
end;
maxg = max(abs(g));
if maxg ~= 0,
gn = g/maxg;
else
gn = g;
end;
maxrf = max(abs(rf));
rfn = rf / maxrf;
% calculate pulse parameters
nrf = length(rf);
abswidth = sum(abs(rfn))/nrf;
effwidth = sum(abs(rfn).^2)/nrf;
area = sum(abs(rfn))/nrf;
pon = (rfn >= 0.00001);
temp_pw = 0;
max_pw = 0;
for n=1:nrf
temp_pw = temp_pw + pon(n);
if (and(pon(n) == 0, temp_pw ~= 0))
max_pw = max(max_pw, temp_pw);
temp_pw = 0;
end;
end;
max_pw = max_pw / n;
rfstat.duration_us = round(length(rf)*SS_TS*1e6);
rfstat.numPoints = length(rf);
rfstat.isodelay_us= round(isodelay*1e6);
dty_cyc = sum(abs(rfn) > 0.2236)/nrf;
if dty_cyc < max_pw,
dty_cyc = max_pw;
end;
rfstat.maxB1_G = max(abs(rf));
rfstat.intB1Sqr = sum(abs(rf).^2 * SS_TS * 1e3);
rfstat.rmsB1 = sqrt(sum(abs(rf).^2))/nrf;
thk_scale = thk * SS_GAMMA / SS_GAMMA_HYDROGEN * 10;
rfstat.nominalThickness_mm = thk*10;
rfstat.nominalMaxGradient_Gcm = maxg;
rfstat.nucleus = SS_NUCLEUS;
% Allow magnitude of RF to go negative, this will
% help reduce sensitivity to theta modulation since
% there is a possible delay on the system for this case
%
% Find pi jumps in phase and remove
% Do this by doubling phase and unwrapping 2*pi jumps
%
dang_rf = 2*angle(rfn);
dang_rf = dang_rf - dang_rf(1);
dang_rf = unwrap(dang_rf, 0.98*pi);
ang_rf = mod(dang_rf/2+pi,2*pi)-pi;
mag_rf = real(rfn .* exp(-i*ang_rf));
% if 1,
% figure;
% subplot(211)
% t = 1:length(rf);
% plot(abs(rf));
% hold on;
% plot(maxrf*mag_rf,'r--')
%
% subplot(212);
% plot(real(rf));
% hold on;
% plot(imag(rf), 'b--');
% plot(real(maxrf*mag_rf.*exp(i*ang_rf)), 'r:');
% plot(imag(maxrf*mag_rf.*exp(i*ang_rf)), 'r:');
% end;
switch (format)
case 'GE'
dat_name = sprintf('%s%03d.dat', root_fname, pulse_num);
fid = fopen(dat_name, 'w');
if fid == -1,
fprintf(1, 'Error opening %s \n', dat_name);
return;
end;
fprintf(fid,'%10d \t\t #Spectral-Spatial\n', 1);
fprintf(fid,'%10d \t\t #res\n', rfstat.numPoints);
fprintf(fid,'%10d \t\t #pw\n',rfstat.duration_us);
fprintf(fid,'%10.7f \t\t #nom_flip \n',ang*180/pi);
fprintf(fid,'%10.7f \t\t #abswidth \n',abswidth);
fprintf(fid,'%10.7f \t\t #effwidth \n',effwidth);
fprintf(fid,'%10.7f \t\t #area \n',area);
fprintf(fid,'%10.7f \t\t #dtycyc \n',dty_cyc);
fprintf(fid,'%10.7f \t\t #maxpw \n',max_pw);
gamscale = SS_GAMMA/SS_GAMMA_HYDROGEN; % GE assumes max B1 is for application at 1H
fprintf(fid,'%10.7f \t\t #max_b1 \n',rfstat.maxB1_G * gamscale);
fprintf(fid,'%10.7f \t\t #max_int_b1_sqr \n',rfstat.intB1Sqr* gamscale^2);
fprintf(fid,'%10.7f \t\t #max_rms_b1 \n',rfstat.rmsB1* gamscale^2);
fprintf(fid,'%10.3f \t\t #a_gzs \n',rfstat.nominalMaxGradient_Gcm);
fprintf(fid,'%10.3f \t\t #nom_thk(mm) \n',rfstat.nominalThickness_mm * gamscale );
fprintf(fid,'%10d \t\t #isodelay\n',rfstat.isodelay_us);
fprintf(fid,'%10d \t\t #g_pow \n',0);
fprintf(fid,'%10d \t\t #g_pos_pow \n',0);
fprintf(fid,'%10d \t\t #g_neg_pow \n',0);
fprintf(fid,'%10d \t\t #g_abs \n',0);
fprintf(fid,'%10d \t\t #g_dgdt \n',0);
fprintf(fid,'%10d \t\t #g_pwm \n',0);
fprintf(fid,'%10d \t\t #g_pwm_abs \n',0);
fprintf(fid,'# *************************************\n');
if (nargin > 6)
for b = 1:length(a_angs)
fprintf(fid,'# Band %d: [%.2f, %.2f] Hz, %.2f degree flip\n', ...
b, fspec(2*b-1), fspec(2*b), a_angs(b)*180/pi);
end
end
fclose(fid);
% Now write out RF and Gradient
%
rho_fname = sprintf('%s%03d.rho', root_fname, pulse_num);
signa(mag_rf,rho_fname,1);
theta_fname = sprintf('%s%03d.pha', root_fname, pulse_num);
signa(-ang_rf,theta_fname,1/pi);
g_fname = sprintf('%s%03d.grd', root_fname, pulse_num);
signa(gn,g_fname,1);
case 'Varian'
fid = fopen(sprintf('%s%03d.RF', root_fname, pulse_num),'wt');
fprintf(fid,'# %s\n', sprintf('%s%03d.RF', root_fname, pulse_num));
fprintf(fid,'# ***************************************************\n');
fprintf(fid,'# Spectral-spatial Matlab Package\n');
fprintf(fid,'# Nucleus = %s\n',SS_NUCLEUS);
fprintf(fid,'# Duration = %d us\n',round(length(rf)*SS_TS*1e6));
fprintf(fid,'# Isodelay = %d us\n',round(isodelay*1e6));
fprintf(fid,'# Resolution = %d us\n', SS_TS*1e6);
fprintf(fid,'# Flip = %.2f degrees\n',ang*180/pi);
fprintf(fid,'# Max B1 = %.4f Gauss\n',max_b1);
if (nargin > 6)
for b = 1:length(a_angs)
fprintf(fid,'# Band %d: [%.2f, %.2f] Hz, %.2f degree flip\n', ...
b, fspec(2*b-1), fspec(2*b), a_angs(b)*180/pi);
end
end
fprintf(fid,'# ***************************************************\n');
fprintf(fid,'# VERSION Matlab\n');
fprintf(fid,'# TYPE selective\n');
fprintf(fid,'# MODULATION amplitude\n');
fprintf(fid,'# EXCITEWIDTH -1.0000\n');
fprintf(fid,'# INVERTWIDTH -1.0000\n');
fprintf(fid,'# INTEGRAL %1.4f\n', sum(abs(rfn))/length(rfn));
fprintf(fid,'# RF_FRACTION -1.0000\n');
fprintf(fid,'# STEPS %d\n',length(rfn));
fprintf(fid,'# ***************************************************\n');
fprintf(fid,'%3.2f %4.2f 1.0\n',[-angle(rfn(:)).'*180/pi; 1023*abs(rfn(:)).']);
fclose(fid);
fid = fopen(sprintf('%s%03d.GRD', root_fname, pulse_num),'wt');
fprintf(fid,'# %s\n', sprintf('%s.GRD', root_fname));
fprintf(fid,'# ***************************************************\n');
fprintf(fid,'# Spectral-spatial Matlab Package\n');
fprintf(fid,'# Nucleus = %s\n',SS_NUCLEUS);
fprintf(fid,'# Duration = %d us\n',round(length(g)*SS_TS*1e6));
fprintf(fid,'# Resolution = %d us\n', SS_TS*1e6);
fprintf(fid,'# Points = %d\n',length(g));
fprintf(fid,'# Max Gradient Strength = %.4f Gauss/cm\n',maxg);
fprintf(fid,'# (Max Gradient Strength Constraint = %.2f Gauss/cm)\n',SS_MXG);
fprintf(fid,'# Max Slew Rate = %.2f Gauss/cm/ms\n',SS_MXS);
fprintf(fid,'# Slice thickness = %.1f mm\n',thk*10);
fprintf(fid,'# ***************************************************\n');
fprintf(fid,'%d 1\n',round(32767*gn));
fclose(fid);
case 'Bruker'
fid = fopen(sprintf('%s%03d.exc', root_fname, pulse_num),'wt');
fprintf(fid,'##TITLE= %s\n', sprintf('%s%03d.RF', root_fname, pulse_num));
fprintf(fid,'##JCAMP-DX= 5.00 BRUKER JCAMP library\n');
fprintf(fid,'##DATA TYPE= Shape Data\n');
fprintf(fid,'##ORIGIN= BRUKER MEDICAL\n');
fprintf(fid,'##OWNER= <BRUKER MEDICAL>\n');
fprintf(fid,'##DATE= 20171106\n');
fprintf(fid,'##MINX= \n');
fprintf(fid,'##MAXX= \n');
fprintf(fid,'##MINY= \n');
fprintf(fid,'##MAXY= \n');
fprintf(fid,'##$SHAPE_EXMODE= Excitation\n');
fprintf(fid,'##$SHAPE_TOTROT= 90.000000e+00\n');
fprintf(fid,'##$SHAPE_BWFAC= %6.6f\n',z_tb);
fprintf(fid,'##$SHAPE_INTEGFAC= %1.4f\n', sum(cos(-angle(rfn)).*abs(rfn))/length(rfn)); %changed by Vickie for Varian
fprintf(fid,'##$SHAPE_REPHFAC= 50\n');
fprintf(fid,'##$SHAPE_TYPE=conventional\n');
fprintf(fid,'##$SHAPE_MODE= 0 \n');
fprintf(fid,'##NPOINTS= %d\n',length(g));
fprintf(fid,'##Spectral_spatial_Matlab_Package\n');
fprintf(fid,'##Nucleus= %s\n',SS_NUCLEUS);
fprintf(fid,'##Duration= %d us\n',round(length(rf)*SS_TS*1e6));
fprintf(fid,'##Resolution= %d us\n', SS_TS*1e6);
fprintf(fid,'##Flip= %.2f degrees\n',ang*180/pi);
fprintf(fid,'##Max_B1 = %.4f Gauss\n',max_b1);
fprintf(fid,'##Spatial_time_bandwidth= %d\n',z_tb);
if SS_SLR_FLAG == 0
fprintf(fid,'##SHAPE= small tip\n');
else
fprintf(fid,'##SHAPE= SLR\n');
end
if (nargin > 6)
for b = 1:length(a_angs)
fprintf(fid,'##Band_%d= [%.2f, %.2f] Hz, %.2f degree flip, %.3f ripple\n', ...
b, fspec(2*b-1), fspec(2*b), a_angs(b)*180/pi, d(b)/sin(max(a_angs)));
end
end
fprintf(fid,'##XYPOINTS= (XY..XY)\n');
%fprintf(fid,'%3.2f %4.2f 1.0\n',[-angle(rfn(:)).'*180/pi; 1023*abs(rfn(:)).']);
%fprintf(fid,'%5.2f %5.2f \n',[-angle(rfn(:)).'*180/pi; 1023*abs(rfn(:)).']);
fprintf(fid,'%5.2f, %5.2f \n',[abs(rfn(:)).'*100'; -angle(rfn(:)).'*180/pi' ]);
fclose(fid);
fid = fopen(sprintf('%s%03d.gp', root_fname, pulse_num),'wt');
fprintf(fid,'##TITLE= %s\n', sprintf('%s%03d.gp', root_fname, pulse_num));
fprintf(fid,'## Spectral_spatial_Matlab_Package\n');
fprintf(fid,'##Nucleus= %s\n',SS_NUCLEUS);
fprintf(fid,'##SHAPE= %s\n',ss_type);
fprintf(fid,'##Duration= %d us\n',round(length(g)*SS_TS*1e6));
fprintf(fid,'##Resolution= %d us\n', SS_TS*1e6);
fprintf(fid,'##Points= %d\n',length(g));
fprintf(fid,'##Max_Gradient_Strength= %.4f Gauss/cm\n',maxg);
fprintf(fid,'##(Max_Gradient_Strength_Constraint= %.2f Gauss/cm)\n',SS_MXG);
fprintf(fid,'##Max_Slew Rate= %.2f Gauss/cm/ms\n',SS_MXS);
fprintf(fid,'##Slice_thickness= %.1f mm\n',thk*10);
fprintf(fid,'%5.3f \n',g);
fclose(fid);
end
% Data Acquisition Descriptor (DAD) XML file containing RF pulse information
% for more info see SIVIC project https://github.com/SIVICLab/sivic
dad_name = sprintf('%s.xml', root_fname);
if pulse_num ==1
docNode = com.mathworks.xml.XMLUtils.createDocument('svk_data_acquisition_description');
dad = docNode.getDocumentElement;
dad_version = docNode.createElement('version');
dad_version.appendChild(docNode.createTextNode('0'));
dad.appendChild(dad_version);
encoding =docNode.createElement('encoding');
dad.appendChild(encoding);
excitation =docNode.createElement('excitation');
encoding.appendChild(excitation);
spectralType =docNode.createElement('spectralType');
spectralType.appendChild(docNode.createTextNode('selective'));
excitation.appendChild(spectralType);
spatialType =docNode.createElement('spatialType');
spatialType.appendChild(docNode.createTextNode('selective'));
excitation.appendChild(spatialType);
pulseName =docNode.createElement('pulseName');
pulseName.appendChild(docNode.createTextNode(root_fname));
excitation.appendChild(pulseName);
% flip angle(s) and associated frequency bands
if (nargin > 6)
for b = 1:length(a_angs)
curr_node = docNode.createElement('flipAngle_deg');
% need to convert to strings??
curr_node.setAttribute('frequencyMin_Hz',num2str(min(fspec(2*b-1),fspec(2*b))));
curr_node.setAttribute('frequencyMax_Hz',num2str(max(fspec(2*b-1),fspec(2*b))));
curr_node.appendChild(docNode.createTextNode(num2str(a_angs(b)*180/pi)));
excitation.appendChild(curr_node);
end
end
% add pulse frequency, other RF stat parameters?
rfstat_fields = fieldnames(rfstat);
for I = 1:length(rfstat_fields)
rfstat_element =docNode.createElement(rfstat_fields(I));
rfstat_element.appendChild(docNode.createTextNode(num2str(rfstat.(rfstat_fields{I}))));
excitation.appendChild(rfstat_element);
end
else
docNode = xmlread(dad_name);
% flip angle(s) and associated frequency bands
if (nargin > 6)
flipAngle_deg = docNode.getElementsByTagName('flipAngle_deg');
for b = 1:length(a_angs)
curr_node = flipAngle_deg.item(b-1);
curr_node_child = curr_node.getFirstChild;
new_flipAngle_deg_data = [char(curr_node_child.getData), ' ' num2str(a_angs(b)*180/pi)];
curr_node.replaceChild(docNode.createTextNode(new_flipAngle_deg_data), curr_node_child);
end
end
end
xmlwrite(dad_name,docNode);
% add pulse frequency
xmlwrite(dad_name,docNode);