-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathss_design_phs.m
495 lines (422 loc) · 15.2 KB
/
ss_design_phs.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
function [g, rf, fs_best, z_plot, f_plot, m_plot, isodelay] = ...
ss_design_phs(z_thk, z_tb, z_de, f, a_angs, de, a_phs, d_phs, ...
ptype, z_ftype, s_ftype, ss_type, ...
f_off, dbg);
% SS_DESIGN - Design spectral-spatial pulse
%
% [g, rf, fs_best, z_plot, f_plot, m_plot] = ...
% ss_design(z_thk, z_tb, z_de, f, a_angs, de,...
% ptype, z_ftype, s_ftype, ss_type, ...
% f_off, dbg)
%
% INPUTS
% z_thk - slice thickness (cm)
% z_tb - spatial time-bandswidth
% z_de - spatial ripples, [pass_ripple, stop_ripple]
% f - spectral band edge specification (Hz)
% a_ang - spectral band flip angle specification (radians)
% de - spectral band ripples - inphase
% a_phs - spectral band phase specification (radians)
% d_phs - spectral band ripples - phase - (radians)
% ptype - spatial pulse type: 'ex' (default), 'se', 'sat', 'inv'
% z_ftype - spatial filter type: 'ms', 'ls', 'pm' (default), 'min', 'max'
% s_ftype - spectral filter type: 'min' (default), 'max', 'lin'
% ss_type - spectral-spatial type: 'Flyback Whole' (default),
% 'Flyback Half', 'EP Whole', 'EP Half',
% 'EP Whole Opp-Null', 'EP Half Opp-Null'
% f_off - center frequency (empty to let ss_design choose)
% dbg - print debug messages: 0-none (default), 1-some, 2-more
%
% OUTPUTS
% g - gradient (G/cm)
% rf - RF (G)
% fs_best - spectral sampling frequency (Hz)
% z_plot, f_plot, m_plot - ss_plot() outputs, ranges and values in figure
% isodelay - time from effective tipdown to end of pulse
%
% See scripts in examples/ folder demonstrations of how to use this
% function.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Spectral-Spatial RF Pulse Design for MRI and MRSI MATLAB Package
%
% Authors: Adam B. Kerr and Peder E. Z. Larson
%
% (c)2007-2011 Board of Trustees, Leland Stanford Junior University and
% The Regents of the University of California.
% All Rights Reserved.
%
% Please see the Copyright_Information and README files included with this
% package. All works derived from this package must be properly cited.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% $Header: /home/adam/cvsroot/src/ss/ss_design_phs.m,v 1.5 2013/08/15 03:34:50 adam Exp $
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Check all inputs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (nargin < 8),
error(['Usage: ss_design(z_thk, z_tb, z_d, f, a_angs, d, a_phs, d_quad' ...
'ptype, z_fttype, s_ftype, ss_type, foff)']);
end;
% Check ptype
%
if (nargin < 9) || isempty(ptype),
ptype = 'ex';
else
switch ptype,
case {'ex', 'se', 'sat', 'inv'}
otherwise
error(sprintf(['Spatial pulse type (ptype) of: %s not' ...
' recognized'], ptype));
end;
end;
% Check z_ftype
%
if (nargin < 10) || isempty(z_ftype),
z_ftype = 'pm';
else
switch z_ftype,
case {'ms', 'ls', 'pm', 'min', 'max'}
otherwise
error(sprintf(['Spatial filter type (z_ftype) of: %s not' ...
' recognized'], z_ftype));
end;
end;
% Check s_ftype
%
if (nargin < 11) || isempty(s_ftype),
s_ftype = 'min';
else
switch s_ftype,
case {'min', 'max', 'lin', 'min_power'}
otherwise
error(sprintf(['Spectral filter type (s_ftype) of: %s not' ...
' recognized'], s_ftype));
end;
end;
% Check ss_type
%
if (nargin < 12) || isempty(ss_type),
ss_type = 'Flyback Whole';
else
switch ss_type,
case {'Flyback Whole', 'Flyback Half', ...
'EP Whole', 'EP Half', 'EP Whole Opp-Null', ...
'EP Half Opp-Null'}
otherwise
error(sprintf(['Spectral-spatial type (ss_type) of: %s not' ...
' recognized'], ss_type));
end;
end;
% Check f_off
%
if (nargin < 13) || isempty(f_off),
f_off = [];
end;
% Check dbg
%
if (nargin < 14) || isempty(dbg),
dbg = 0;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Initialize globals
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ss_globals;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Convert "a_angs" to Beta polynomial "a"
% Convert effective ripples to polynomial ripples
% depending on pulse type
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ang = max(a_angs);
if SS_SLR_FLAG,
a = sin(a_angs/2)/sin(ang/2);
%a = asin(sin(ang)*a)/ang;
else
a = a_angs/ang;
end
z_d = rf_ripple(z_de, [1 0], ang, ptype);
[d,a,ang] = rf_ripple(de, a, ang, ptype);
% Update d, a to be complex to include phase specification
%
d = d .* exp(i*d_phs);
a = a .* exp(i*a_phs);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate gradient lobe required to achieve spatial
% prescription
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate cycles/cm required
%
kz_max = z_tb / z_thk; % cycles/cm
kz_area = kz_max / SS_GAMMA; % G/cm * s
% Note: If ss_type is EP, then SS_EQUAL_LOBES must be 1
%
if strfind(ss_type, 'EP')
SS_EQUAL_LOBES = 1;
else;
SS_EQUAL_LOBES = 0;
end;
% Get SS gradient lobes that gives this area with
% the desired fraction of sloped gradient included
% (this is to limit amount of versing required)
%
[gpos, gneg, g1, g2, g3] = ...
grad_ss(kz_area, [], SS_VERSE_FRAC, SS_MXG, SS_MXS, ...
SS_TS, SS_EQUAL_LOBES);
% Calculate maximum spectral sampling frequency
%
lobe = [gpos gneg];
t_poslobe = length(gpos) * SS_TS;
t_lobe = length(lobe) * SS_TS;
fs_scale = 1;
if strfind(ss_type, 'EP')
fs_max = 2/t_lobe;
if ~strfind(ss_type, 'Opp-Null')
fs_scale = 1/2; % If true null, make sure
end; % aliasing check is for half-frequency
else
fs_max = 1/t_lobe;
end;
% Estimate sampling frequencies that won't cause
% incompatible aliasing of stopbands/passbands
%
switch ss_type,
case {'Flyback Half', 'EP Half', 'EP Half Opp-Null'},
sym_flag = 1;
otherwise
sym_flag = 0;
end;
fdiff = diff(f);
fwidths = sort(fdiff(1:2:end), 2, 'descend');
fs_min = sum(fwidths(1:2))/2; % Loose estimate on lower bound
df = (fs_max-fs_min)/(SS_NUM_FS_TEST-1);
for idx = 1:SS_NUM_FS_TEST,
fs_test(idx) = fs_min + (idx-1)*df;
% Make sure fs_cur is integer number of samples
%
nsamp = ceil(1/(fs_test(idx)*SS_TS));
fs_test(idx) = 1/(nsamp*SS_TS);
% Test aliasing of frequencies into operating BW
%
[f_a, a_a, d_a, fo] = ss_alias(f,a,d,f_off,fs_test(idx)*fs_scale,sym_flag);
if (isempty(f_a)),
fs_ok(idx) = 0;
else
fs_ok(idx) = 1;
end;
end;
if (dbg >= 2)
figure;
plot(fs_test, fs_ok, '*');
title('Feasible Spectral Sampling Frequencies');
xlabel('Frequency [Hz]');
ylabel('Flag (1=OK, 0=No Good)');
drawnow;
pause(1);
end;
if (~any(fs_ok == 1)),
fs_over = fs_test(end);
while isempty(f_a)
fs_over = fs_over + df;
[f_a, a_a, d_a, fo] = ss_alias(f,a,d,f_off,fs_over*fs_scale,sym_flag);
end;
fprintf(1,'ss_design: Incompatible aliasing of frequency spec\n');
fprintf(1,'at all tested frequencies. \n');
fprintf(1,'Current max sampling is: %6.1f\n', fs_max);
fprintf(1,'Estimated required sampling is: %6.1f\n', fs_over);
fprintf(1, 'Try any of the following to incr:\n');
fprintf(1,' - Decrease spatial TBW\n');
fprintf(1,' - Increase slice thickness\n');
fprintf(1,' - Increase VERSE fraction\n');
fprintf(1,' - Decrease frequency band widths\n');
switch (ss_type),
case {'Flyback Whole', 'Flyback Half'}
fprintf(1,' - Try EPI type SS\n');
end;
error('No good fs');
end;
fs_bands_left = find(diff([0 fs_ok]) == 1);
fs_bands_right = find(diff([fs_ok 0]) == -1);
fs_bands = [fs_bands_left; fs_bands_right];
fs_bands = fs_bands(:)';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Iterate on lobe width trying to meet B1 requirements
% with minimum-time pulse
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nsolutions = 0;
if (SS_NUM_LOBE_ITERS == 1),
fs_top = fs_bands(end);
fs_best = fs_test(fs_top);
% Call design script for SS that calculates rf, g that meets
% sampling requirements
%
if strfind(ss_type, 'Flyback')
[rf, g, isodelay] = ss_flyback_phs(ang, z_thk, z_tb, z_d, f, a, d, fs_best, ...
ptype, z_ftype, s_ftype, ss_type, ...
f_off, dbg);
else
[rf, g, isodelay] = ss_ep_phs(ang, z_thk, z_tb, z_d, f, a, d, fs_best, ...
ptype, z_ftype, s_ftype, ss_type, ...
f_off, dbg);
end;
if ~isempty(rf),
b1_best = max(abs(rf));
dur_best = length(rf) * SS_TS;
pow_best = sum(abs(rf).^2) * SS_TS;
nsolutions = 1;
fprintf(1,'Solution(s) exists!\n');
fprintf(1, 'Fs: %6.1f B1: %5.3fG Power: %5.3e G^2 ms Dur: %4.1fms\n', fs_best, b1_best, pow_best, dur_best*1e3);
else
fprintf(1, 'Fs: %6.1f *** No Soln ***\n', fs_best);
end;
else
fprintf(1, 'Iterating on spectral sampling frequency to reduce B1\n');
% Keep iterating on pulse design until B1 requirement is
% met with highest sampling rate possible
%
dur_best = inf;
b1_best = inf;
nbands = length(fs_bands)/2;
for band = nbands:-1:1,
% Try each band
%
fs_bot = fs_bands(band*2-1);
fs_top = fs_bands(band*2);
d_idx = floor((fs_top - fs_bot + 1)/(SS_NUM_LOBE_ITERS-1));
d_idx = max(1,d_idx);
niter = ceil((fs_top-fs_bot+1)/d_idx);
for iter = niter:-1:1,
idx = fs_bot + (iter-1)*d_idx;
if iter == niter,
idx = fs_top;
end;
fs = fs_test(idx);
% Call design script for SS that calculates rf, g that meets
% sampling requirements
%
if strfind(ss_type, 'Flyback')
[rf, g, isodelay] = ss_flyback_phs(ang, z_thk, z_tb, z_d, f, a, d, fs, ...
ptype, z_ftype, s_ftype, ss_type, ...
f_off, dbg);
else
[rf, g, isodelay] = ss_ep_phs(ang, z_thk, z_tb, z_d, f, a, d, fs, ...
ptype, z_ftype, s_ftype, ss_type, ...
f_off, dbg);
end;
if isempty(rf),
fprintf(1, 'Band: %d/%d Iter: %d/%d Fs: %6.1f *** No Soln ***\n', ...
nbands-band+1, nbands, niter-iter+1, niter, fs);
continue;
end;
nsolutions = nsolutions+1;
rfall{nsolutions} = rf;
gall{nsolutions} = g;
fsall(nsolutions) = fs;
isodelayall(nsolutions) = isodelay;
b1 = max(abs(rf));
dur = length(rf) * SS_TS;
pow = sum(abs(rf).^2) * SS_TS;
infoall{nsolutions} = sprintf('Fs: %6.1f B1: %5.3fG Power: %5.3e G^2 ms Dur: %4.1fms', ...
fs, b1, pow, dur*1e3);
fprintf(1, 'Band: %d/%d Iter: %d/%d %s\n', nbands-band+1, nbands, niter-iter+1, niter, infoall{nsolutions});
if ((b1 <= SS_MAX_B1) && (dur < dur_best))
b1_best = b1;
dur_best = dur;
Ibest = nsolutions;
elseif ((b1_best > SS_MAX_B1) && (b1 < b1_best))
b1_best = b1;
dur_best = dur;
Ibest = nsolutions;
end
end;
end;
% Choose desired solution
%
if nsolutions > 0
fprintf(1, '\n');
fprintf(1,'Solution(s) exists!\n');
for n=1:nsolutions
fprintf(1, '%d) %s\n', n, infoall{n});
end
if nsolutions > 1
Isolution = input('Which pulse would you like to use? (leave empty for shortest pulse) ');
if isempty(Isolution) || Isolution < 1 || Isolution > nsolutions
Isolution = Ibest;
end
fprintf(1, 'Returning %s\n', infoall{Isolution});
else
Isolution = 1;
end
rf = rfall{Isolution};
g = gall{Isolution};
isodelay = isodelayall(Isolution);
fs_best = fsall(Isolution);
end
end;
if isempty(rf)
fprintf(1,'No solution found! Trying to increase band ripples to determine limiting\n frequency specifications...\n')
orig_min_order = SS_MIN_ORDER;
SS_MIN_ORDER = 0;
fs_top = fs_bands(end);
fs_best = fs_test(fs_top);
d_max = 1*ones(size(d));
d_min = abs(d);
tol_factor = 4;
for Id = 1:length(d)
% trying bisection search with increased ripple in each band to
% determine which portion of frequency spec is limiting
d_test = d;
while (d_max(Id) - d_min(Id)) > abs(d(Id))/tol_factor
d_test(Id) = (d_max(Id) + d_min(Id))/2 * exp(i*angle(d(Id)));
if strfind(ss_type, 'Flyback')
[rf, g, isodelay] = ss_flyback_phs(ang, z_thk, z_tb, z_d, f, a, d_test, fs_best, ...
ptype, z_ftype, s_ftype, ss_type, ...
f_off, dbg);
else
[rf, g, isodelay] = ss_ep_phs(ang, z_thk, z_tb, z_d, f, a, d_test, fs_best, ...
ptype, z_ftype, s_ftype, ss_type, ...
f_off, dbg);
end;
% update min/max ripple values
if ~isempty(rf),
d_max(Id) = abs(d_test(Id));
else
d_min(Id) = abs(d_test(Id));
end;
end
end
% find ripple values that create solutions
Ifix = find(d_max < 1);
if ~isempty(Ifix)
[tempmin Imin] = min(d_max - abs(d));
d_fix = d; d_fix(Imin) = d_max(Imin)*exp(i*angle(d(Imin)));
fprintf(1,'Solution found by increasing ripples in bands %s\n', int2str(Ifix));
fprintf(1,'Returning pulse with increased ripple in band %d (%.1f to %.1f Hz):\n', Imin, f(2*Imin-1), f(2*Imin));
if strfind(ss_type, 'Flyback')
[rf, g, isodelay] = ss_flyback_phs(ang, z_thk, z_tb, z_d, f, a, d_fix, fs_best, ...
ptype, z_ftype, s_ftype, ss_type, ...
f_off, dbg);
else
[rf, g, isodelay] = ss_ep_phs(ang, z_thk, z_tb, z_d, f, a, d_fix, fs_best, ...
ptype, z_ftype, s_ftype, ss_type, ...
f_off, dbg);
end;
b1_best = max(abs(rf));
dur_best = length(rf) * SS_TS;
pow_best = sum(abs(rf).^2) * SS_TS;
fprintf(1, 'Fs: %6.1f B1: %5.3fG Power: %5.3e G^2 ms Dur: %4.1fms\n', fs_best, b1_best, pow_best, dur_best*1e3);
fprintf(1,'\nPulse specs should be modified by reducing bandwidths or increasing ripple in bands %s\n', int2str(Ifix));
fprintf(1,'Increasing the max pulse duration or slice thickness may also help\n');
else
error('No solution found! Try reducing bandwidths, increasing ripple, increasing max duration, increasing slice thickness...')
end
SS_MIN_ORDER = orig_min_order;
end;
% Test RF
%
fmid = (f(1:2:end) + f(2:2:end))/2;
bw = [-fs_best/2 fs_best/2];
[f_plot,z_plot,m_plot] = ss_plot(g,rf,SS_TS, ptype,z_thk*2,bw,...
SS_GAMMA, fmid, isodelay);