-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathrf_ripple.m
119 lines (105 loc) · 3.84 KB
/
rf_ripple.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
function [d, a, ang] = rf_ripple(de, a, ang, type)
% RF_RIPPLE - Compute polynomial ripple required for various pulse types
%
% Input
% - de - vector of ripples required
% - a - vector of amplitudes in bands
% - ang - angle of excitation
% - excitation type: 'ex', 'se', 'sat', 'inv'
%
% Output
% - d: ripples for filter design
% - a: band amplitudes for filter design
% - ang: angle of excitation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Spectral-Spatial RF Pulse Design for MRI and MRSI MATLAB Package
%
% Authors: Adam B. Kerr and Peder E. Z. Larson
%
% (c)2007-2011 Board of Trustees, Leland Stanford Junior University and
% The Regents of the University of California.
% All Rights Reserved.
%
% Please see the Copyright_Information and README files included with this
% package. All works derived from this package must be properly cited.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nband = length(de);
for band = 1:nband,
db = de(band);
ab = a(band);
switch (type )
case 'ex'
% Determine B ripple originating from mxy ripple,
% find which is most significant, then use this
% to set the ripple
%
mxy_mid = sin(2*asin(sin(ang/2)*ab));
mxy_pos = max(-1,min(1,db + mxy_mid));
mxy_neg = max(-1,min(1,-db + mxy_mid));
B_mid = sin(ang/2) * ab;
B_pos = sin(asin(mxy_pos)/2);
B_neg = sin(asin(mxy_neg)/2);
d(band) = max(abs(B_pos-B_mid), abs(B_neg-B_mid))/sin(ang/2);
case 'se'
mxy_mid = (sin(ang/2)*ab)^2;
mxy_pos = max(0,min(1,db + mxy_mid));
mxy_neg = max(0,min(1,-db + mxy_mid));
% check for ripples that will result in B > 1 and scale back
% a if necessary
if (mxy_pos >= 1) || (mxy_neg >= 1)
ab = sqrt(1 - abs(db)) / sin(ang/2);
mxy_mid = (sin(ang/2)*ab)^2;
mxy_pos = max(0,min(1,db + mxy_mid));
mxy_neg = max(0,min(1,-db + mxy_mid));
a(band) = ab;
end
B_mid = sin(ang/2) * ab;
B_pos = sqrt(mxy_pos);
B_neg = sqrt(mxy_neg);
d(band) = max(abs(B_pos-B_mid), abs(B_neg-B_mid))/sin(ang/2);
% if a(band) == 1,
% d(band) = de(band)/4;
% else
% d(band) = sqrt(de(band));
% end;
case {'inv','sat'}
mz_mid = 1 - 2* (sin(ang/2)*ab)^2;
mz_pos = max(-1,min(1,db + mz_mid));
mz_neg = max(-1,min(1,-db + mz_mid));
% check for ripples that will result in B > 1 and scale back
% a if necessary
if (mz_neg <= -1) || (mz_pos <= -1)
ab = sqrt(1 - abs(db)/2) / sin(ang/2);
mz_mid = 1 - 2* (sin(ang/2)*ab)^2;
mz_pos = max(-1,min(1,db + mz_mid));
mz_neg = max(-1,min(1,-db + mz_mid));
a(band) = ab;
end
B_mid = sin(ang/2) * ab;
B_pos = sin(acos(mz_pos)/2);
B_neg = sin(acos(mz_neg)/2);
% B_pos = sqrt((1-mz_pos)/2); % same as above
% B_neg = sqrt((1-mz_neg)/2);
d(band) = max(abs(B_pos-B_mid), abs(B_neg-B_mid))/sin(ang/2);
% if a(band) == 1,
% d(band) = de(band)/8;
% else
% d(band) = sqrt(de(band)/2);
% end;
% case 'sat'
% if a(band) == 1,
% d(band) = de(band)/2;
% else
% d(band) = sqrt(de(band));
% end;
end;
end;
% scale a if the peak angle has been reduced
if max(a) ~= 1
max_a = max(a);
a = a / max_a;
ang = 2*asin(sin(ang/2)*max_a);
d = d / max_a;
end