-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathgrad_ss.m
185 lines (163 loc) · 4.46 KB
/
grad_ss.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
function [gpos,gneg,g1,g2,g3] = grad_ss(m0, n, f, mxg, mxs, ts, equal)
% GRAD_SS - Calculate spectral-spatial bipolar pulse
%
% [gpos, gneg, g1, g2, g3] = grad_ss (m0, n, f, mxg, mxs, ts, equal)
%
% m0 - target zeroth moment (G/cm * s) of one lobe
% n - total number of samples to use if not []
% f - fraction of ramp to include in bridge [0..1]
% mxg - maximum amplitude (G/cm)
% mxs - maximum slew rate (G/cm/ms)
% ts - sample time in s
% equal - boolean if pos/neg lobes should be same
%
% gpos - Positive lobe gradient
% gneg - Negative lobe gradient
% g1, g2, g3 - Ramp up, bridge, ramp down gradients
% in positive lobe
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Spectral-Spatial RF Pulse Design for MRI and MRSI MATLAB Package
%
% Authors: Adam B. Kerr and Peder E. Z. Larson
%
% (c)2007-2011 Board of Trustees, Leland Stanford Junior University and
% The Regents of the University of California.
% All Rights Reserved.
%
% Please see the Copyright_Information and README files included with this
% package. All works derived from this package must be properly cited.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% $Header: /home/adam/cvsroot/src/ss/grad_ss.m,v 1.9 2013/08/15 03:34:50 adam Exp $
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
m0 = abs(m0); % Must be positive
% Check n is even if equal lobes called for
%
if equal,
if bitget(n,1) ~= 0,
error('equal lobes specified, but n not even');
end;
end;
% Convert mxs to G/cm/s
%
mxs_s = mxs * 1e3;
dg = mxs_s * ts; % Max delta in one sample
% Determine trapezoid parameters
%
% na - number of constant samples
% nb - number ramp samples
% nc - number samples of ramp in bridge
% A - trapezoid amplitude
%
% Do different things if number of samples is specified
%
[gp_tmp, g1_tmp, g2_tmp, g3_tmp] = grad_min_bridge(m0, f, mxg, mxs, ts);
if equal,
gn_tmp = -gp_tmp;
else
m0_pos = sum(gp_tmp) * ts;
gn_tmp = grad_mintrap(-m0_pos, mxg, mxs, ts);
end;
if isempty(n),
gpos = gp_tmp;
g1 = g1_tmp;
g2 = g2_tmp;
g3 = g3_tmp;
gneg = gn_tmp;
else
if (length([gp_tmp gn_tmp]) > n)
error('grad_ss: Solution not obtained in spec num samples');
end;
% Save known solution
%
gp_save = gp_tmp;
g1_save = g1_tmp;
g2_save = g2_tmp;
g3_save = g3_tmp;
gn_save = -gp_save;
nb_save = find(diff(gp_save) == 0, 1, 'first');
% Now keep decreasing number of ramp samples in
% positive lobe until "n" exceeded
%
spec_met = 1;
while (spec_met && (nb_save > 1))
% Get area in ramps
%
nb = nb_save - 1;
nc = max(1,ceil(nb*f));
a_ramps = (2*nb-nc+1)*nc * dg * ts;
% Get number of constant samples
%
a_const = m0 - a_ramps;
na = max(0,ceil(a_const/(nb*dg*ts)));
% Get correct amplitude, gradients now
%
dg_test = m0 / ( ((2*nb-nc+1)*nc + nb*na) *ts);
A = nb * dg_test;
if ((A > mxg) || (dg_test > dg)),
spec_met = 0;
continue;
end;
g1 = [1:(nb-nc)] * dg_test;
g2 = [[(nb-nc+1):nb] nb*ones(1,na) [nb:-1:(nb-nc+1)]] * dg_test;
g3 = [(nb-nc):-1:0] * dg_test;
gp = [g1 g2 g3];
if abs((sum(g2)*ts) - m0) > 10*eps,
error('grad_ss: Area not calculated correctly');
end;
if (equal)
gn = -gp;
else
gn = grad_mintrap(-sum(gp)*ts, mxg, mxs, ts);
end;
% See if spec still met
%
if length([gp gn]) < n,
spec_met = 1;
gp_save = gp;
g1_save = g1;
g2_save = g2;
g3_save = g3;
gn_save = gn;
nb_save = nb;
else
spec_met = 0;
end;
end;
% Fix up result to have "exactly" n samples in it!
%
if ~equal
na = n - length(gn_save) - (2 * nb_save + 1);
else
na = (n - 2*(2 * nb_save + 1))/2;
end;
nb = nb_save;
nc = max(1,ceil(nb*f));
% Get correct amplitude, gradients now
%
dg_test = m0 / ( ((2*nb-nc+1)*nc + nb*na) *ts);
A = nb * dg_test;
if ((A >= 1.001 * mxg) || (dg_test > 1.001 * dg)),
error('Amp/Slew being exceeded');
end;
g1 = [1:(nb-nc)] * dg_test;
g2 = [[(nb-nc+1):nb] nb*ones(1,na) [nb:-1:(nb-nc+1)]] * dg_test;
g3 = [(nb-nc):-1:0] * dg_test;
gpos = [g1 g2 g3];
if abs((sum(g2)*ts) - m0) > 10*eps,
error('grad_ss: Area not calculated correctly');
end;
if (~equal)
ratio = sum(-gn_save)/sum(gpos);
if (ratio < 1-10*eps)
% warning('grad_ss: Improbable ratio'); % fix problem here
end;
gneg = gn_save / ratio;
else
gneg = -gpos;
end;
end;
return;