-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathbing_search.py
168 lines (144 loc) · 5.89 KB
/
bing_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from playwright.sync_api import sync_playwright
#from searcher import *
from typing import List, Dict, Tuple, Optional
import json
import requests
from bs4 import BeautifulSoup
import openai
openai.api_key = '' # Replace with your OpenAI API key
openai.api_base = "https://api.chatanywhere.com.cn/v1"
from langchain.document_loaders import UnstructuredURLLoader
from langchain.docstore.document import Document
from unstructured.cleaners.core import remove_punctuation,clean,clean_extra_whitespace
from langchain import OpenAI
from langchain.chains.summarize import load_summarize_chain
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.mapreduce import MapReduceChain
import json
from typing import List, Dict
class SearchResult:
def __init__(self, title, url, snip) -> None:
self.title = title
self.url = url
self.snip = snip
def dump(self):
return {
"title": self.title,
"url": self.url,
"snip": self.snip
}
def __str__(self) -> str:
return json.dumps(self.dump())
class SearcherInterface:
def search(self, query) -> List[SearchResult]:
raise NotImplementedError()
def generate_document(url):
"Given an URL, return a langchain Document to futher processing"
loader = UnstructuredURLLoader(urls=[url],
mode="elements",
post_processors=[clean,remove_punctuation,clean_extra_whitespace])
elements = loader.load()
selected_elements = [e for e in elements if e.metadata['category']=="NarrativeText"]
full_clean = " ".join([e.page_content for e in selected_elements])
return Document(page_content=full_clean, metadata={"source":url})
def summarize_document(url, model_name):
"Given an URL return the summary from OpenAI model"
llm = OpenAI(model_name='ada',temperature=0,openai_api_key=openai.api_key)
chain = load_summarize_chain(llm, chain_type="stuff")
tmp_doc = generate_document(url)
summary = chain.run([tmp_doc])
return clean_extra_whitespace(summary)
# print(summarize_document(url, ""))
####################################################################################################
def fetch_webpage_content(url):
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
return soup.get_text()
def summarize_text(text,question,model,tokenizer):
if model==None:
messages = [{'role': 'user','content': f"base the following text:\n\n{text}\n\n use no more than 100 chinese words to answer the question:{question}"},]
response = openai.ChatCompletion.create(
model='gpt-3.5-turbo-16k',
messages=messages,
stream=True,
)
completion = {'role': '', 'content': ''}
for event in response:
if event['choices'][0]['finish_reason'] == 'stop':
#print(f'收到的完成数据: {completion}')
break
for delta_k, delta_v in event['choices'][0]['delta'].items():
#print(f'流响应数据: {delta_k} = {delta_v}')
completion[delta_k] += delta_v
messages.append(completion) # 直接在传入参数 messages 中追加消息
return messages[1]['content']
else:
task_split_prompt = f"根据以下文本::\n\n{text}\n\n 用不超过100个中文字符回答以下问题:{question}"
response=model.chat(tokenizer,task_split_prompt,history=[])[0]
return response
class Searcher(SearcherInterface):
def __init__(self) -> None:
pass
def _parse(self, result) -> List[SearchResult]:
if not result:
return None
ret = []
for item in result:
ret.append(SearchResult(item['title'], item['url'], None))
return ret
def search(self, query) -> List[SearchResult]:
return self._parse(query_bing(query))
def get_bing_search_raw_page(question: str):
results = []
with sync_playwright() as p:
browser = p.chromium.launch(channel="chrome", headless=True)
context = browser.new_context()
page = context.new_page()
try:
page.goto(f"https://www.bing.com/search?q={question}")
except:
page.goto(f"https://www.bing.com")
page.fill('input[name="q"]', question)
page.press('input[name="q"]', 'Enter')
try:
page.wait_for_load_state('networkidle', timeout=6000)
except:
pass
# page.wait_for_load_state('networkidle')
search_results = page.query_selector_all('.b_algo h2')
for result in search_results:
title = result.inner_text()
a_tag = result.query_selector('a')
if not a_tag: continue
url = a_tag.get_attribute('href')
if not url: continue
# print(title, url)
results.append({
'title': title,
'url': url
})
browser.close()
return results
def query_bing(question, max_tries=3,model=None,tokenizer=None):
cnt = 0
while cnt < max_tries:
cnt += 1
results = get_bing_search_raw_page(question)
# print(results)
for ret in results:
try:
url = ret["url"]
webpage_text = fetch_webpage_content(url)
webpage_text = webpage_text.rstrip("\n")
webpage_text = webpage_text.strip()[:4097]
summary = summarize_text(webpage_text[:1000],question,model=model,tokenizer=tokenizer)
return summary
except Exception as e:
print(e)
continue
return '没有找到相关结果'
if __name__ == '__main__':
print(query_bing('如何学好nlp?'))
# with open('crawl.json', 'w', encoding='utf-8') as f:
# json.dump(query_bing('今天天气如何?'), f, ensure_ascii=False, indent=4)
# exit(0)