-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutil.lua
57 lines (50 loc) · 1.6 KB
/
util.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
-- Utilities
local util = {}
local cast
function cast(tableOfParams, typeName)
-- Some nice aliases
if typeName == "float" then typeName = "torch.FloatTensor" end
if typeName == "double" then typeName = "torch.DoubleTensor" end
if typeName == "cuda" then typeName = "torch.CudaTensor" end
if typeName == "cudaDouble" then typeName = "torch.CudaDoubleTensor" end
-- If we passed in a tensor, just cast it
if torch.isTensor(tableOfParams) then
return tableOfParams:type(typeName)
end
-- Recursively cast
local out = {}
for key,value in pairs(tableOfParams) do
if torch.isTensor(value) then
out[key] = value:type(typeName)
elseif type(value) == "table" then
out[key] = cast(value,typeName)
else
out[key] = value
end
end
return out
end
util.cast = cast
local distance
function distance(output, target)
assert(output:dim() <= 2, 'up to 2d tensor only')
if output:dim() == 1 then
output = output:view(1,-1)
target = target:view(1,-1)
end
--[[
local dx = output[{{}, {4}}] - target[{{}, {4}}]
local dy = output[{{}, {5}}] - target[{{}, {5}}]
local dz = output[{{}, {6}}] - target[{{}, {6}}]
local position_diff = torch.cat({dx, dy, dz}, 2)
--]]
----[[
local dx = output[{{}, {2}}] - target[{{}, {2}}]
local dz = output[{{}, {3}}] - target[{{}, {3}}]
local position_diff = torch.cat({dx, dz}, 2)
--]]
local euclidean_dist = torch.sqrt(torch.sum(torch.cmul(position_diff, position_diff),2))
return torch.mean(euclidean_dist) --mean distance over mini-batches
end
util.distance = distance
return util