-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot_graph.lua
49 lines (37 loc) · 1.69 KB
/
plot_graph.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
require 'torch'
require 'network_model'
require 'camera_params'
-----------------------------------------------------------------------------
--------------------- parse command line options ----------------------------
-----------------------------------------------------------------------------
local cmd = torch.CmdLine()
cmd:text()
cmd:text("Arguments")
cmd:text("Options")
cmd:option("-camera_file", "/dados/ICL-NUIM/camerapar-iclnuim.txt", "camera intrinsics params file")
cmd:option("-input_width", 320, "input width")
cmd:option("-input_height", 180, "input height")
cmd:option('-batch_size', 1, 'Batch size')
local opt = cmd:parse(arg)
local model = DeltaOdom()
local camera_params = load_camera_intrinsics(opt.camera_file, opt.input_height, opt.input_width, opt.input_height, opt.input_width)
local network = model:build_network(camera_params)
local curr_data = torch.Tensor(opt.batch_size,3,opt.input_height,opt.input_width)
local base_data = torch.Tensor(opt.batch_size,3,opt.input_height,opt.input_width)
local depth_data = torch.Tensor(opt.batch_size,1,opt.input_height,opt.input_width)
local pose_data = torch.Tensor(opt.batch_size,6)
local input = {curr_data, base_data, depth_data, pose_data}
local output = network:forward{input,input}
local siamese = model:get_siamese_model()
local generateGraph = require 'optnet.graphgen'
-- visual properties of the generated graph
-- follows graphviz attributes
graphOpts = {
displayProps = {shape='ellipse',fontsize=14, style='solid'},
nodeData = function(oldData, tensor)
return oldData .. '\n' .. 'Size: '.. tensor:numel()
end
}
local g = generateGraph(siamese, input, graphOpts)
graph.dot(g, 'Siamese', 'graph')
--run dot < graph.dot -T pdf -o graph.pdf