-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgenerate_mask.py
153 lines (124 loc) · 4.05 KB
/
generate_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""
Compress the video through gradient-based optimization.
"""
import argparse
import gc
import logging
import time
from pathlib import Path
import coloredlogs
import enlighten
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import io
from dnn.dnn_factory import DNN_Factory
from maskgen.vgg11 import FCN
from utils.bbox_utils import center_size
from utils.loss_utils import focal_loss as get_loss
from utils.mask_utils import *
from utils.results_utils import read_ground_truth, read_results
from utils.timer import Timer
from utils.video_utils import get_qp_from_name, read_videos, read_videos_pyav, write_video
from utils.visualize_utils import visualize_heat_by_summarywriter
from tqdm import tqdm
# added this summer
import av
sns.set()
def main(args):
gc.enable()
# initialize
logger = logging.getLogger("maskgen")
torch.set_default_tensor_type(torch.FloatTensor)
# read the video frames (will use the largest video as ground truth)
# videos, bws, video_names = read_videos(args.inputs, logger, sort=True)
video = read_videos_pyav([args.input], logger)[0][0]
# construct applications
# app = DNN_Factory().get_model(args.app)
mask_generator = FCN()
mask_generator.load(args.path)
mask_generator.eval().cuda()
# num_frames = len([f for f in videos[0].decode()])
num_frames = video.streams.video[0].frames
# construct the mask
mask_shape = [
# len(videos[-1]),
num_frames,
1,
720 // args.tile_size,
1280 // args.tile_size,
]
mask = torch.ones(mask_shape).float()
# construct the writer for writing the result
writer = SummaryWriter(f"runs/{args.output}")
logger.info("Input: %s", args.input)
logger.info("Output: %s", args.output)
logger.info("Start mask generation...")
for fid, (hq_frame, mask_slice) in enumerate(
tqdm(zip(video.decode(video=0), mask.split(1)), total=num_frames)
):
hq_image = T.ToTensor()(hq_frame.to_image()).unsqueeze(0)
# construct hybrid image
with torch.no_grad():
hq_image = hq_image.cuda()
mask_gen = mask_generator(hq_image)
mask_gen = mask_gen.softmax(dim=1)[:, 1:2, :, :]
mask_slice[:, :, :, :] = mask_gen
# visualization
if fid % args.visualize_step_size == 0:
image = T.ToPILImage()(hq_image.cpu()[0, :, :, :])
visualize_heat_by_summarywriter(
image,
mask_slice.cpu().detach().float(),
"inferred_saliency",
writer,
fid,
args,
)
# qizheng: instead, store the mask information in a separate file
with open(f"{args.output}.rawmask", "wb") as f:
pickle.dump(mask, f)
if __name__ == "__main__":
# set the format of the logger
coloredlogs.install(
fmt="%(asctime)s [%(levelname)s] %(name)s:%(funcName)s[%(lineno)s] -- %(message)s",
level="INFO",
)
parser = argparse.ArgumentParser()
parser.add_argument(
"-i",
"--input",
type=str,
help="The video file name that generates the mask.",
required=True,
)
parser.add_argument(
"-o",
"--output",
type=str,
help="The video file name of the final compressed video.",
required=True,
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument(
"--tile_size", type=int, help="The tile size of the mask.", default=8
)
parser.add_argument(
"-p",
"--path",
type=str,
help="The path of pth file that stores the generator parameters.",
required=True,
)
parser.add_argument(
"--visualize_step_size",
type=int,
help="Proposing one single mask for smooth_frames many frames",
default=100,
)
args = parser.parse_args()
main(args)