-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbatch_blackgen_roi.py
187 lines (146 loc) · 5.52 KB
/
batch_blackgen_roi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import subprocess
from itertools import product
from config import settings
import yaml
x264_dir = settings.x264_dir
# v_list = ['dashcam_%d_test' % (i+1) for i in range(4)] + ['trafficcam_%d_test' % (i+1) for i in range(4)]
# v_list = [v_list[0]]
# v_list = ["youtube_videos/dashcam_%d_crop" % (i + 1) for i in range(4)] + [
# "youtube_videos/trafficcam_%d_crop" % (i + 1) for i in range(4)
# ]
# v_list = ["dashcam/dashcam_%d" % i for i in [2, 5, 6, 8]]
# v_list = ["visdrone/videos/vis_%d" % i for i in range(169, 174)] + [
# "dashcam/dashcam_%d" % i for i in range(1, 11)
# ]
# v_list = ["adapt/drive_%d" % i for i in range(30, 60)]
# v_list = ["dashcam/dashcam_%d" % i for i in [7]]
# v_list = v_list[::-1]
# v_list = [v_list[1]]
# v_list = ["dashcam/dashcam_2"]
# v_list = [v_list[2]]
# v_list = ["visdrone/videos/vis_171"]
high = 30
tile = 16
# model_name = f"COCO_full_normalizedsaliency_R_101_FPN_crossthresh"
"""
For object detection, use bound 0.5, conv 9 for drone videos and dashcam videos.
Use
COCO_full_normalizedsaliency_R_101_FPN_crossthresh
as the model, and use
["dashcam/dashcam_%d" % i for i in range(1, 8)]
and
["visdrone/videos/vis_%d" % i for i in range(169, 174)]
for video id
"""
# conv_list = [3]
# bound_list = [0.05]
#
# for visdrone
# conv_list = [11]
# bound_list = [0.1]
# uniform color background
# conv_list = [1, 5, 9]
# bound_list = [0.15, 0.2, 0.25]
# base_list = [40, 36]
# conv_list = [1, 5]
# bound_list = [0.15, 0.1]
# base_list = [36]
# conv_list = [1]
# bound_list = [0.02]
# base_list = [51]
# conv_list = [1]
# bound_list = [0.1, 0.2]
# base_list = [40]
conv_list = [1]
bound_list = [0.2]
base_list = [40]
# conv_list = [1]
# bound_list = [0.2]
# base_list = [40]
# conv_list = [1, 5]
# bound_list = [0.1, 0.15, 0.05]
# base_list = [-1]
# model_name = f"cityscape_detection_FPN_SSD_withconfidence_allclasses_new_unfreezebackbone"
# v_list = ["videos/drone_%d" % i for i in range(7)] + [
# "videos/dashcamcropped_%d" % i for i in range(1, 11)
# ]
# v_list = ["videos/drone_%d" % i for i in range(7)]
# v_list = [v_list[i] for i in range(len(v_list)) if i % 2 == 0]
# v_list = ["videos/driving_%d" % i for i in range(4, 5)]
# v_list = ["videos/dashcamcropped_%d" % i for i in range(1, 8)] + [
# "videos/driving_%d" % i for i in range(5)
# ]
v_list = ["artifact/dashcamcropped_%d" % i for i in range(1, 2)]
# v_list = ["videos/surf_%d_final" % i for i in [1, 2, 3, 4, 6, 7]]
# v_list = ["videos/dashcamcropped_%d" % i for i in range(1, 2)]
# FPN
stats = "artifact/stats_QP30_thresh7_segmented_FPN"
conf_thresh = 0.7
gt_conf_thresh = 0.7
app_name = "COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml"
# efficientdet
# stats = "frozen_stats_MLSys/stats_QP30_thresh4_segment_EfficientDet"
# conf_thresh = 0.4
# gt_conf_thresh = 0.4
# app_name = "EfficientDet"
# YoLo
# stats = "frozen_stats_MLSys/stats_QP30_thresh3_segment_Yolo"
# stats = "artifact/stats_QP30_thresh3_segment_Yolo"
# conf_thresh = 0.3
# gt_conf_thresh = 0.3
# app_name = "Yolo5s"
# segmentation
# stats = "frozen_stats_MLSys/stats_QP30_segment_fcn"
# app_name = "Segmentation/fcn_resnet50"
# conf_thresh = 0.7
# gt_conf_thresh = 0.7
model_app = "FPN"
model_name = f"COCO_detection_{model_app}_SSD_withconfidence_allclasses_new_unfreezebackbone_withoutclasscheck"
# model_name = "pretrainedkeypointmodel"
# model_app = "fcn"
visualize_step_size = 10000
# accs = [filter([fmt % i, "newSSDwconf", "bound_0.2", "lq_40", "conv_1"]) for i in ids]
import glob
# app_name = "Segmentation/fcn_resnet50"
# app_name = "EfficientDet"
filename = "SSD/accmpegmodel"
for conv, bound, base, v in product(conv_list, bound_list, base_list, v_list):
print(v, conv, bound, base)
# output = f'{v}_compressed_ground_truth_2%_tile_16.mp4'
# visdrone/videos/vis_169_blackgen_bound_0.2_qp_30_conv_5_app_FPN.mp4
# output = f"{v}_blackgen_bound_{bound}_qp_30_conv_{conv}_app_FPN.mp4"
output = f"{v}_roi_bound_{bound}_conv_{conv}_hq_{high}_lq_{base}_app_{model_app}.mp4"
# examine_output = (
# f"{v}_blackgen_dual_SSD_bound_{bound}_conv_{conv}_app_FPN.mp4"
# )
# os.system(f"rm -r {examine_output}*")
if not os.path.exists(output):
# if True:
os.system(
f"python compress_blackgen_roi.py -i {v}_qp_{high}.mp4 "
f" {v}_qp_{high}.mp4 -s {v} -o {output} --tile_size {tile} -p maskgen_pths/{model_name}.pth.best"
f" --conv_size {conv} "
f" -g {v}_qp_{high}.mp4 --bound {bound} --hq {high} --lq {base} --smooth_frames 10 --app {app_name} "
f"--maskgen_file {x264_dir}/../video-compression/maskgen/{filename}.py --visualize_step_size {visualize_step_size}"
)
os.system(
f"python inference.py -i {output} --app {app_name} --confidence_threshold {conf_thresh} --gt_confidence_threshold {gt_conf_thresh} --visualize_step_size {visualize_step_size} "
# f" --visualize --lq_result {v}_qp_{base}.mp4 --ground_truth {v}_qp_{high}.mp4"
)
os.system(
f"python examine.py -i {output} -g {v}_qp_{high}.mp4 --confidence_threshold {conf_thresh} --gt_confidence_threshold {gt_conf_thresh} --app {app_name} --stats {stats}"
)
# if not os.path.exists(f"diff/{output}.gtdiff.mp4"):
# gt_output = f"{v}_compressed_blackgen_gt_bbox_conv_{conv}.mp4"
# subprocess.run(
# [
# "python",
# "diff.py",
# "-i",
# output,
# gt_output,
# "-o",
# f"diff/{output}.gtdiff.mp4",
# ]
# )