-
Notifications
You must be signed in to change notification settings - Fork 773
/
Copy pathtpu_mtj_backend.py
1419 lines (1319 loc) · 67 KB
/
tpu_mtj_backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''
This file is AGPL-licensed.
Some of the code in this file is from Clover Edition:
https://github.com/cloveranon/Clover-Edition/blob/master/aidungeon/gpt2generator.py
The license for Clover Edition is shown below:
Copyright (c) 2019 Nick Walton
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
import utils
import multiprocessing
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Tuple, TypeVar
import progressbar
import time
import os
import sys
import json
import zipfile
import requests
import random
import jax
import jax.dlpack
from jax.config import config
from jax.experimental import maps
import jax.numpy as jnp
import numpy as np
import haiku as hk
from transformers import AutoTokenizer, GPT2Tokenizer, AutoModelForCausalLM, GPTNeoForCausalLM
from tokenizers import Tokenizer
from mesh_transformer.checkpoint import read_ckpt_lowmem
from mesh_transformer.transformer_shard import CausalTransformer, CausalTransformerShard, PlaceholderTensor
from mesh_transformer.util import to_bf16
params: Dict[str, Any] = {}
__seed = random.randrange(2**64)
rng = random.Random(__seed)
def get_rng_seed():
return __seed
def set_rng_seed(seed: int):
global __seed, rng
rng = random.Random(seed)
__seed = seed
return seed
def randomize_rng_seed():
return set_rng_seed(random.randrange(2**64))
def get_rng_state():
return rng
def set_rng_state(state):
global rng
rng = state
def new_rng_state(seed: int):
return random.Random(seed)
def warper_callback(logits) -> np.array:
raise NotImplementedError("`tpu_mtj_backend.warper_callback()` needs to be defined")
def stopping_callback(generated, n_generated, excluded_world_info) -> Tuple[List[set], bool, bool]:
raise NotImplementedError("`tpu_mtj_backend.stopping_callback()` needs to be defined")
def settings_callback() -> dict:
return {
"sampler_order": utils.default_sampler_order.copy(),
"top_p": 0.9,
"temp": 0.5,
"top_k": 0,
"tfs": 1.0,
"typical": 1.0,
"top_a": 0.0,
"repetition_penalty": 1.0,
"rpslope": 0.0,
"rprange": 0,
}
def started_compiling_callback() -> None:
pass
def stopped_compiling_callback() -> None:
pass
def compiling_callback() -> None:
pass
def show_spinner():
bar = progressbar.ProgressBar(max_value=progressbar.UnknownLength, widgets=[progressbar.Timer(), ' ', progressbar.BouncingBar(left='[', right=']', marker='█')])
i = 0
while True:
bar.update(i)
time.sleep(0.1)
i += 1
__F = TypeVar("__F", bound=Callable)
__T = TypeVar("__T")
def __move_xmap(f: __F, out_axis: str) -> __F:
return maps.xmap(
f,
in_axes=(["shard", ...], ["batch", ...]),
out_axes=[out_axis, ...],
axis_resources={'shard': 'mp', 'batch': 'dp'},
)
def __shard_xmap(batch_dim=1):
xmap = __move_xmap(lambda s, b: s, "shard")
def inner(x: __T) -> __T:
return xmap(x, np.empty(batch_dim))
return inner
def __batch_xmap(shard_dim=1):
xmap = __move_xmap(lambda s, b: b, "batch")
def inner(x: __T) -> __T:
return xmap(np.empty(shard_dim), x)
return inner
class _EmptyState(NamedTuple):
pass
class _DummyOptimizer:
def init(*args, **kwargs):
return _EmptyState()
def apply_repetition_penalty_dynamic(logits, tokens, repetition_penalty, generated_index, gen_length, rpslope, rprange):
'''
This gets called by generate_loop_fn to apply repetition penalty
to the 1D array logits using the provided 1D array of tokens to penalize
'''
tokens = np.minimum(tokens, params["n_vocab"]-1) # https://github.com/google/jax/issues/3774
rpslope = np.int32(rpslope)
rprange = np.int32(rprange)
clipped_rprange = rprange if rprange > 0 else tokens.shape[-1]
penalty_arange = np.roll(np.arange(tokens.shape[-1]) + (clipped_rprange - tokens.shape[-1]), generated_index, axis=-1)
# Make a new array with the same length as the tokens array but with
# each element replaced by the value at the corresponding index in the
# logits array; e.g.
# if logits is [77, 5, 3, 98] and tokens is [0, 1, 2, 3, 2, 3, 1],
# then penalty_logits will be [77, 5, 3, 98, 3, 98, 5]
penalty_logits = np.take(logits, tokens)
# Repetition penalty slope
if rpslope != 0.0 and rprange > 0:
_penalty = (penalty_arange/(rprange - 1)) * 2 - 1
_penalty = (rpslope * _penalty) / (1 + np.abs(_penalty) * (rpslope - 1))
_penalty = 1 + ((_penalty + 1) / 2) * (repetition_penalty - 1)
repetition_penalty = _penalty
# Divide positive values by repetition_penalty and multiply negative
# values by repetition_penalty (the academic publication that described
# this technique actually just only divided, but that would cause tokens
# with negative logits to become more likely, which is obviously wrong)
penalty_logits = np.where(
penalty_arange >= 0,
np.where(
penalty_logits > 0,
penalty_logits/repetition_penalty,
penalty_logits*repetition_penalty,
),
penalty_logits,
)
# Finally, put those penalized logit values back into their original
# positions in the logits array
logits[tokens] = penalty_logits
return logits
def kobold_sample_dynamic(key, logits, rpargs, sampler_order: Optional[np.ndarray] = None, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typical=1.0, top_a=0.0):
'''
This gets called by generate_loop_fn to apply a series of 6 filters
to the logits (top-k, then top-a, then top-p, then TFS, then typical, then temperature)
before picking one token using the modified logits
'''
# Top-k (keep only the k tokens with the highest logits and remove
# the rest, by setting their logits to negative infinity)
def top_k_filter(logits):
# After sorting the logits array in descending order,
# sorted_indices_to_remove is a 1D array that is True for tokens
# in the sorted logits array we want to remove and False for ones
# we want to keep, in this case the first top_k elements will be
# False and the rest will be True
sorted_indices_to_remove = np.arange(len(logits)) >= top_k
# Unsort the logits array back to its original configuration and
# remove tokens we need to remove
_, indices_to_remove = jax.lax.sort_key_val(
np.argsort(-logits),
sorted_indices_to_remove,
)
return np.where(indices_to_remove, -np.inf, logits)
# Top-a (remove all tokens that have softmax probability less than
# a*m^2 where m is the maximum softmax probability)
def top_a_filter(logits):
# Replace every element in the logits array
# with e (Euler's number) to the power of that element, and divide
# each element of the new array by the sum of the elements in the
# new array
probabilities = np.array(jax.nn.softmax(logits), copy=True)
# Find the largest probability
probs_max = probabilities.max()
# Remove tokens
return np.where(probabilities < probs_max * probs_max * top_a, -np.inf, logits)
# Top-p (after sorting the remaining tokens again in descending order of
# logit, remove the ones that have cumulative softmax probability
# greater than p)
def top_p_filter(logits):
# Sort the logits array in descending order, replace every element
# with e (Euler's number) to the power of that element, and divide
# each element of the new array by the sum of the elements in the
# new array
sorted_logits = -np.sort(-logits)
probabilities = np.array(jax.nn.softmax(sorted_logits), copy=True)
# Calculate cumulative_probabilities as the prefix-sum array of
# probabilities
cumulative_probabilities = np.cumsum(probabilities, axis=-1)
# We want to remove tokens with cumulative probability higher
# than top_p
sorted_indices_to_remove = cumulative_probabilities > top_p
# Don't ever remove the token with the highest logit, even if
# the probability is higher than top_p
sorted_indices_to_remove[0] = False
# Unsort and remove
_, indices_to_remove = jax.lax.sort_key_val(
np.argsort(-logits),
sorted_indices_to_remove,
)
return np.where(indices_to_remove, -np.inf, logits)
# Tail free sampling (basically top-p a second time on remaining tokens
# except it's the "cumulative normalized absolute second finite
# differences of the softmax probabilities" instead of just the
# cumulative softmax probabilities)
def tail_free_filter(logits):
# Sort in descending order
sorted_logits = -np.sort(-logits)
# Softmax again
probabilities = np.array(jax.nn.softmax(sorted_logits), copy=True)
# Calculate the second finite differences of that array (i.e.
# calculate the difference array and then calculate the difference
# array of the difference array)
d2 = np.diff(np.diff(probabilities))
# Get the absolute values of all those second finite differences
d2 = np.abs(d2)
# Normalize (all elements in the array are divided by the sum of the
# array's elements)
d2 = d2 / d2.sum(axis=-1, keepdims=True)
# Get the prefix-sum array
cumulative_d2 = np.cumsum(d2, axis=-1)
# We will remove the tokens with a cumulative normalized absolute
# second finite difference larger than the TFS value
sorted_indices_to_remove = cumulative_d2 > tfs
# Don't remove the token with the highest logit
sorted_indices_to_remove[0] = False
# Since the d2 array has two fewer elements than the logits array,
# we'll add two extra Trues to the end
sorted_indices_to_remove = np.pad(
sorted_indices_to_remove,
(0, 2),
constant_values=True,
)
# Unsort and remove
_, indices_to_remove = jax.lax.sort_key_val(
np.argsort(-logits),
sorted_indices_to_remove,
)
return np.where(indices_to_remove, -np.inf, logits)
# Typical sampling (https://arxiv.org/pdf/2202.00666.pdf)
def typical_filter(logits):
# Compute softmax probabilities and the natural logarithms of them
probs = jax.nn.softmax(logits)
with np.errstate(divide="ignore"):
log_probs = np.log(probs)
# Compute the negative of entropy, which is the sum of p*ln(p) for all p
# in the set of softmax probabilities of the logits
neg_entropy = np.nansum(probs * log_probs, axis=-1, keepdims=True)
# Determine absolute difference between the negative entropy and the
# log probabilities
entropy_deviation = np.abs(neg_entropy - log_probs)
# Keep certain tokens such that the sum of the entropy_deviation of the
# kept tokens is the smallest possible value such that the sum of the
# softmax probabilities of the kept tokens is at least the threshold
# value (by sorting the tokens in ascending order of entropy_deviation
# and then keeping the smallest possible number of tokens from the
# beginning such that sum of softmax probabilities is at or above the
# threshold)
_, sorted_logits = jax.lax.sort_key_val(entropy_deviation, probs)
sorted_indices_to_remove = np.cumsum(sorted_logits, axis=-1) >= typical
sorted_indices_to_remove = np.roll(sorted_indices_to_remove, 1, axis=-1)
sorted_indices_to_remove[0] = False
# Unsort and remove
_, indices_to_remove = jax.lax.sort_key_val(
jnp.argsort(entropy_deviation),
sorted_indices_to_remove,
)
return np.where(indices_to_remove, -jnp.inf, logits)
# Temperature (just divide the logits by the temperature)
def temp_filter(logits):
return logits / temp
for k in sampler_order:
if k == 0 and top_k > 0: logits = top_k_filter(logits)
if k == 1 and top_a > 0.0: logits = top_a_filter(logits)
if k == 2 and top_p < 1.0: logits = top_p_filter(logits)
if k == 3 and tfs < 1.0: logits = tail_free_filter(logits)
if k == 4 and typical < 1.0: logits = typical_filter(logits)
if k == 5 and temp != 1.0: logits = temp_filter(logits)
if k == 6 and rpargs[1] != 1.0: logits = apply_repetition_penalty_dynamic(logits, *rpargs)
# Finally, pick one token using the softmax thingy again (it gives
# an array whose elements sum to 1 so it can be used nicely as a
# probability distribution)
return jax.random.categorical(key, logits, -1).astype(np.uint32)
def apply_repetition_penalty_static(logits, tokens, repetition_penalty, generated_index, gen_length, rpslope, rprange):
'''
This gets called by generate_loop_fn to apply repetition penalty
to the 1D array logits using the provided 1D array of tokens to penalize
'''
rpslope = jnp.int32(rpslope)
rprange = jnp.int32(rprange)
clipped_rprange = jax.lax.cond(rprange > 0, lambda x: x, lambda x: tokens.shape[-1], rprange)
penalty_arange = jnp.roll(jnp.arange(tokens.shape[-1]) + (clipped_rprange - tokens.shape[-1]), generated_index, axis=-1)
# Make a new array with the same length as the tokens array but with
# each element replaced by the value at the corresponding index in the
# logits array; e.g.
# if logits is [77, 5, 3, 98] and tokens is [0, 1, 2, 3, 2, 3, 1],
# then penalty_logits will be [77, 5, 3, 98, 3, 98, 5]
penalty_logits = jnp.take(logits, tokens)
# Repetition penalty slope
def apply_slope(carry):
repetition_penalty, rprange = carry
_penalty = (penalty_arange/(rprange - 1)) * 2 - 1
_penalty = (rpslope * _penalty) / (1 + jnp.abs(_penalty) * (rpslope - 1))
_penalty = 1 + ((_penalty + 1) / 2) * (repetition_penalty - 1)
return _penalty
repetition_penalty = jax.lax.cond(
(rpslope != 0.0) & (rprange > 0), # Not a typo; do not use `and` here, it makes JAX crash
apply_slope,
lambda carry: jnp.full(tokens.shape, carry[0]),
(repetition_penalty, rprange),
)
# Divide positive values by repetition_penalty and multiply negative
# values by repetition_penalty (the academic publication that described
# this technique actually just only divided, but that would cause tokens
# with negative logits to become more likely, which is obviously wrong)
penalty_logits = jnp.where(
penalty_arange >= 0,
jnp.where(
penalty_logits > 0,
penalty_logits/repetition_penalty,
penalty_logits*repetition_penalty,
),
penalty_logits,
)
# Finally, put those penalized logit values back into their original
# positions in the logits array
return logits.at[tokens].set(penalty_logits)
def kobold_sample_static(key, logits, rpargs, sampler_order: Optional[np.ndarray] = None, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typical=1.0, top_a=0.0):
'''
This gets called by generate_loop_fn to apply a series of 6 filters
to the logits (top-k, then top-a, then top-p, then TFS, then typical, then temperature)
before picking one token using the modified logits
'''
# Top-k (keep only the k tokens with the highest logits and remove
# the rest, by setting their logits to negative infinity)
def top_k_filter(logits):
# After sorting the logits array in descending order,
# sorted_indices_to_remove is a 1D array that is True for tokens
# in the sorted logits array we want to remove and False for ones
# we want to keep, in this case the first top_k elements will be
# False and the rest will be True
sorted_indices_to_remove = jnp.arange(len(logits)) >= top_k
# Unsort the logits array back to its original configuration and
# remove tokens we need to remove
_, indices_to_remove = jax.lax.sort_key_val(
jnp.argsort(-logits),
sorted_indices_to_remove,
)
return jnp.where(indices_to_remove, -jnp.inf, logits)
# Top-a (remove all tokens that have softmax probability less than
# a*m^2 where m is the maximum softmax probability)
def top_a_filter(logits):
# Replace every element in the logits array
# with e (Euler's number) to the power of that element, and divide
# each element of the new array by the sum of the elements in the
# new array
probabilities = jax.nn.softmax(logits)
# Find the largest probability
probs_max = probabilities.max()
# Remove tokens
return jnp.where(probabilities < probs_max * probs_max * top_a, -jnp.inf, logits)
# Top-p (after sorting the remaining tokens again in descending order of
# logit, remove the ones that have cumulative softmax probability
# greater than p)
def top_p_filter(logits):
# Sort the logits array in descending order, replace every element
# with e (Euler's number) to the power of that element, and divide
# each element of the new array by the sum of the elements in the
# new array
sorted_logits = -jnp.sort(-logits)
probabilities = jax.nn.softmax(sorted_logits)
# Calculate cumulative_probabilities as the prefix-sum array of
# probabilities
cumulative_probabilities = jnp.cumsum(probabilities, axis=-1)
# We want to remove tokens with cumulative probability higher
# than top_p
sorted_indices_to_remove = cumulative_probabilities > top_p
# Don't ever remove the token with the highest logit, even if
# the probability is higher than top_p
sorted_indices_to_remove = sorted_indices_to_remove.at[0].set(False)
# Unsort and remove
_, indices_to_remove = jax.lax.sort_key_val(
jnp.argsort(-logits),
sorted_indices_to_remove,
)
return jnp.where(indices_to_remove, -jnp.inf, logits)
# Tail free sampling (basically top-p a second time on remaining tokens
# except it's the "cumulative normalized absolute second finite
# differences of the softmax probabilities" instead of just the
# cumulative softmax probabilities)
def tail_free_filter(logits):
# Sort in descending order
sorted_logits = -jnp.sort(-logits)
# Softmax again
probabilities = jax.nn.softmax(sorted_logits)
# Calculate the second finite differences of that array (i.e.
# calculate the difference array and then calculate the difference
# array of the difference array)
d2 = jnp.diff(jnp.diff(probabilities))
# Get the absolute values of all those second finite differences
d2 = jnp.abs(d2)
# Normalize (all elements in the array are divided by the sum of the
# array's elements)
d2 = d2 / d2.sum(axis=-1, keepdims=True)
# Get the prefix-sum array
cumulative_d2 = jnp.cumsum(d2, axis=-1)
# We will remove the tokens with a cumulative normalized absolute
# second finite difference larger than the TFS value
sorted_indices_to_remove = cumulative_d2 > tfs
# Don't remove the token with the highest logit
sorted_indices_to_remove = sorted_indices_to_remove.at[0].set(False)
# Since the d2 array has two fewer elements than the logits array,
# we'll add two extra Trues to the end
sorted_indices_to_remove = jnp.pad(
sorted_indices_to_remove,
(0, 2),
constant_values=True,
)
# Unsort and remove
_, indices_to_remove = jax.lax.sort_key_val(
jnp.argsort(-logits),
sorted_indices_to_remove,
)
return jnp.where(indices_to_remove, -jnp.inf, logits)
# Typical sampling (https://arxiv.org/pdf/2202.00666.pdf)
def typical_filter(logits):
# Compute softmax probabilities and the natural logarithms of them
probs = jax.nn.softmax(logits)
log_probs = jnp.log(probs)
# Compute the negative of entropy, which is the sum of p*ln(p) for all p
# in the set of softmax probabilities of the logits
neg_entropy = jnp.nansum(probs * log_probs, axis=-1, keepdims=True)
# Determine absolute difference between the negative entropy and the
# log probabilities
entropy_deviation = jnp.abs(neg_entropy - log_probs)
# Keep certain tokens such that the sum of the entropy_deviation of the
# kept tokens is the smallest possible value such that the sum of the
# softmax probabilities of the kept tokens is at least the threshold
# value (by sorting the tokens in ascending order of entropy_deviation
# and then keeping the smallest possible number of tokens from the
# beginning such that sum of softmax probabilities is at or above the
# threshold)
_, sorted_logits = jax.lax.sort_key_val(entropy_deviation, probs)
sorted_indices_to_remove = jnp.cumsum(sorted_logits, axis=-1) >= typical
sorted_indices_to_remove = jnp.roll(sorted_indices_to_remove, 1, axis=-1)
sorted_indices_to_remove = sorted_indices_to_remove.at[0].set(False)
# Unsort and remove
_, indices_to_remove = jax.lax.sort_key_val(
jnp.argsort(entropy_deviation),
sorted_indices_to_remove,
)
return jnp.where(indices_to_remove, -jnp.inf, logits)
# Temperature (just divide the logits by the temperature)
def temp_filter(logits):
return logits / temp
for k in sampler_order:
logits = jax.lax.cond(jnp.logical_and(k == 0, top_k > 0), top_k_filter, lambda x: x, logits)
logits = jax.lax.cond(jnp.logical_and(k == 1, top_a > 0.0), top_a_filter, lambda x: x, logits)
logits = jax.lax.cond(jnp.logical_and(k == 2, top_p < 1.0), top_p_filter, lambda x: x, logits)
logits = jax.lax.cond(jnp.logical_and(k == 3, tfs < 1.0), tail_free_filter, lambda x: x, logits)
logits = jax.lax.cond(jnp.logical_and(k == 4, typical < 1.0), typical_filter, lambda x: x, logits)
logits = jax.lax.cond(jnp.logical_and(k == 5, temp != 1.0), temp_filter, lambda x: x, logits)
logits = jax.lax.cond(jnp.logical_and(k == 6, rpargs[1] != 1.0), lambda x: apply_repetition_penalty_static(*x), lambda x: x[0], (logits, *rpargs))
# Finally, pick one token using the softmax thingy again (it gives
# an array whose elements sum to 1 so it can be used nicely as a
# probability distribution)
return jax.random.categorical(key, logits, -1).astype(jnp.uint32)
pad_token_id = 50256
def sample_func(data, key, numseqs_aux, badwords, repetition_penalty, generated_index, gen_length, rpslope, rprange, sampler_options):
numseqs = numseqs_aux.shape[0]
gi = data[0][1]
def sample_loop_fn(carry):
generated, generated_index, logits, _ = carry[0][0]
sample_key = carry[1]
# Get the pseudo-random number generator key that will
# be used by kobold_sample_dynamic to randomly pick a token
sample_key, new_key = jax.random.split(sample_key, num=2)
# Remove any tokens in the badwords list by setting
# their logits to negative infinity which effectively
# makes their probabilities of being chosen zero
logits[badwords] = -np.inf
# Use the sampler (kobold_sample_dynamic) to pick one token
# based on the logits array as a 0D uint32 array
# (higher logit means higher probability of being
# picked, non-linearly)
next_token = kobold_sample_dynamic(
sample_key,
logits,
(
generated,
repetition_penalty,
generated_index,
gen_length,
rpslope,
rprange,
),
**sampler_options,
)
# Remember what token was picked
generated[generated_index] = next_token
generated_index += 1
# Re-pack the current sample_loop_fn's state so we can
# get back the same variables the next time
carry[0][0] = [generated, generated_index, logits, next_token]
carry[0].append(carry[0].pop(0))
return carry[0], new_key
# return jax.lax.while_loop(
# lambda carry: carry[0][0][1] == gi,
# sample_loop_fn,
# (data, key),
# )
carry = (data, key)
while carry[0][0][1] == gi:
carry = sample_loop_fn(carry)
return carry
class PenalizingCausalTransformer(CausalTransformer):
def __init__(self, config, **kwargs):
# Initialize
super().__init__(config, **kwargs)
def generate_static(state, key, ctx, ctx_length, gen_length, numseqs_aux, sampler_options, soft_embeddings=None):
compiling_callback()
numseqs = numseqs_aux.shape[0]
# These are the tokens that we don't want the AI to ever write
badwords = jnp.array(vars.badwordsids).squeeze()
@hk.transform
def generate_sample(context, ctx_length):
# Give the initial context to the transformer
transformer = CausalTransformerShard(config)
def generate_initial_scan_fn(sequence_index, _):
_, initial_state = transformer.generate_initial(context, ctx_length, soft_embeddings=soft_embeddings)
# The "generated" array will contain the tokens from the
# context as well as the tokens picked by the sampler at
# each stage, padded with a bunch of 50256s, so we know
# which tokens have to be repetition penalized
generated = jnp.pad(context, (0, config["seq"]), constant_values=pad_token_id) # Let it start off with just the 2048 context tokens, plus some 50256s which will be eventually filled with sampler-chosen tokens
generated_index = config["seq"]
# Add that information to generate_loop_fn's starting state
initial_state = (generated, generated_index, sequence_index) + initial_state
return sequence_index+1, initial_state
_, initial_states = jax.lax.scan(generate_initial_scan_fn, 0, None, numseqs)
sample_key = initial_states[-1][0]
initial_states = list(jax.tree_map(lambda x: x[i], initial_states[:-1]) for i in range(numseqs))
# Get repetition penalty from the arguments
repetition_penalty = sampler_options.pop('repetition_penalty', None)
rpslope = sampler_options.pop('rpslope', None)
rprange = sampler_options.pop('rprange', None)
# This is the main generation loop
def generate_loop_fn(carry):
# Unpack current generate_loop_fn state
generated, generated_index, sequence_index, next_token, decode_state = carry[0][0]
sample_key = carry[1]
# Get the pseudo-random number generator key that will
# be used by kobold_sample_static to randomly pick a token
sample_key, new_key = jax.random.split(sample_key)
# Give the context to the model and get the logits it
# spits out
# (a 2D array with 1 row and 50400 columns representing
# how strongly it thinks each of the 50257 tokens in its
# vocabulary should be appended to the context, followed
# by 143 apparently useless columns ???)
logits, new_state = transformer.generate_once(next_token, decode_state, soft_embeddings=soft_embeddings)
# Verify that logits does indeed have that many rows and
# columns (if you get an error here, pray for mercy)
assert logits.shape == (1, config["n_vocab"])
# Flatten it into a 1D array to make it easier to use
logits = logits[0]
# Remove any tokens in the badwords list by setting
# their logits to negative infinity which effectively
# makes their probabilities of being chosen zero
logits = logits.at[badwords].set(-jnp.inf)
# Use the sampler (kobold_sample_static) to pick one token
# based on the logits array as a 0D uint32 array
# (higher logit means higher probability of being
# picked, non-linearly)
next_token = kobold_sample_static(
sample_key,
logits,
(
generated,
repetition_penalty,
generated_index,
gen_length,
rpslope,
rprange,
),
**sampler_options,
)
# Remember what token was picked
generated = generated.at[generated_index].set(next_token)
generated_index += 1
# Re-pack the current generate_loop_fn's state so we can
# get back the same variables the next time
carry[0][0] = (generated, generated_index, sequence_index, next_token[jnp.newaxis], new_state)
carry[0].append(carry[0].pop(0))
return carry[0], new_key
return jax.lax.while_loop(
lambda carry: carry[0][0][1] - config["seq"] < gen_length,
generate_loop_fn,
(initial_states, sample_key),
)
return generate_sample.apply(state["params"], key, ctx, ctx_length)
self.generate_static_xmap = jax.experimental.maps.xmap(
fun=generate_static,
in_axes=(
["shard", ...],
["batch", ...],
["batch", ...],
["batch", ...],
["batch", ...],
["batch", ...],
["batch", ...],
["shard", ...],
),
out_axes=["shard", "batch", ...],
axis_resources={'shard': 'mp', 'batch': 'dp'},
)
def generate_initial(state, key, ctx, ctx_length, numseqs_aux, soft_embeddings=None):
compiling_callback()
numseqs = numseqs_aux.shape[0]
@hk.transform
def generate_initial_inner(context, ctx_length):
# Give the initial context to the transformer
transformer = CausalTransformerShard(config)
def generate_initial_scan_fn(sequence_index, c):
_, initial_state = transformer.generate_initial(c, ctx_length, soft_embeddings=soft_embeddings)
generated_index = config["seq"]
# Add that information to generate_loop_fn's starting state
initial_state = (jnp.empty(config["n_vocab"], dtype=jnp.float32), generated_index, sequence_index) + initial_state
return sequence_index+1, initial_state
_, initial_states = jax.lax.scan(generate_initial_scan_fn, 0, context, numseqs)
sample_key = initial_states[-1][0]
initial_states = list(list(jax.tree_map(lambda x: x[i], initial_states[:-1])) for i in range(numseqs))
return initial_states, sample_key
return generate_initial_inner.apply(state["params"], key, ctx, ctx_length)
self.generate_initial_xmap = jax.experimental.maps.xmap(
fun=generate_initial,
in_axes=(
["shard", ...],
["batch", ...],
["batch", ...],
["batch", ...],
["batch", ...],
["shard", ...],
),
out_axes=["shard", "batch", ...],
axis_resources={'shard': 'mp', 'batch': 'dp'},
)
def generate_once(data, state, numseqs_aux, soft_embeddings=None):
numseqs = numseqs_aux.shape[0]
@hk.without_apply_rng
@hk.transform
def generate_once_inner():
gi = data[0][1]
# Give the initial context to the transformer
transformer = CausalTransformerShard(config)
# This is the main generation loop
def generate_loop_fn(carry):
# Unpack current generate_loop_fn state
_, generated_index, sequence_index, next_token, decode_state = carry[0][0]
# Give the context to the model and get the logits it
# spits out
# (a 2D array with 1 row and 50400 columns representing
# how strongly it thinks each of the 50257 tokens in its
# vocabulary should be appended to the context, followed
# by 143 apparently useless columns ???)
logits, new_state = transformer.generate_once(next_token, decode_state, soft_embeddings=soft_embeddings)
# Verify that logits does indeed have that many rows and
# columns (if you get an error here, pray for mercy)
assert logits.shape == (1, config["n_vocab"])
assert logits.dtype == jnp.float32
# Flatten it into a 1D array to make it easier to use
logits = logits[0]
# Re-pack the current generate_loop_fn's state so we can
# get back the same variables the next time
generated_index += 1
carry[0][0] = [logits, generated_index, sequence_index, next_token, new_state]
carry[0].append(carry[0].pop(0))
return carry[0],
return jax.lax.while_loop(
lambda carry: carry[0][0][1] == gi,
generate_loop_fn,
(data,),
)
return generate_once_inner.apply(state["params"])
self.generate_once_xmap = jax.experimental.maps.xmap(
fun=generate_once,
in_axes=(
["shard", "batch", ...],
["shard", ...],
["batch", ...],
["shard", ...],
),
out_axes=["shard", "batch", ...],
axis_resources={'shard': 'mp', 'batch': 'dp'},
)
def generate_dynamic(self, ctx, ctx_length, gen_length, numseqs, return_logits=False, soft_embeddings=None, excluded_world_info=None, use_callback=True):
assert excluded_world_info is not None
assert not return_logits
assert gen_length.ndim == 1
assert soft_embeddings is not None
key = hk.PRNGSequence(rng.randint(0, 2 ** 60))
batch_size = ctx.shape[0]
self.batch_size = batch_size
_numseqs_aux = jnp.empty((batch_size, numseqs), dtype=np.uint32)
numseqs_aux = batch_xmap(_numseqs_aux)
sample_data = [
[
np.pad(ctx[0][i], (0, params["seq"]), constant_values=pad_token_id),
params["seq"],
None,
np.empty((), dtype=np.uint32),
]
for i in range(numseqs)
]
n_generated = 0
regeneration_required = False
halt = False
started_compiling_callback()
generate_data, sample_key = self.generate_initial_xmap(self.state, jnp.array(key.take(batch_size)), ctx, ctx_length, numseqs_aux, soft_embeddings)
sample_key = np.asarray(sample_key[0, 0])
while True:
generate_data, = self.generate_once_xmap(generate_data, self.state, numseqs_aux, soft_embeddings)
for i in range(numseqs):
sample_data[i][2] = np.array(generate_data[i][0][0, 0], copy=True)
if use_callback:
logits = np.float32(tuple(d[2] for d in sample_data))
logits = warper_callback(logits)
for i in range(numseqs):
sample_data[i][2] = logits[i]
sampler_options = settings_callback()
repetition_penalty = sampler_options.pop("repetition_penalty", 1.0)
rpslope = sampler_options.pop("rpslope", 0.0)
rprange = sampler_options.pop("rprange", 0)
sample_data, sample_key = sample_func(sample_data, sample_key, _numseqs_aux, badwords, repetition_penalty, params["seq"] + n_generated, gen_length, rpslope, rprange, sampler_options)
n_generated += 1
for i in range(numseqs):
generate_data[i][3] = np.tile(sample_data[i][0][sample_data[i][1]-1][np.newaxis, np.newaxis], (params["cores_per_replica"], 1, 1))
if use_callback:
generated = np.uint32(tuple(d[0] for d in sample_data))
excluded_world_info, regeneration_required, halt = stopping_callback(generated, n_generated, excluded_world_info)
if regeneration_required or halt:
break
else:
break
stopped_compiling_callback()
return sample_data, n_generated, regeneration_required, halt
def generate_static(self, ctx, ctx_length, gen_length, numseqs, sampler_options, return_logits=False, soft_embeddings=None):
assert not return_logits
key = hk.PRNGSequence(rng.randint(0, 2 ** 60))
batch_size = ctx.shape[0]
self.batch_size = batch_size
started_compiling_callback()
result = self.generate_static_xmap(
self.state,
jnp.array(key.take(batch_size)),
ctx,
np.array(ctx_length, dtype=np.uint32),
np.array(gen_length, dtype=np.uint32),
np.empty((batch_size, numseqs), dtype=np.uint8),
sampler_options,
soft_embeddings,
)
stopped_compiling_callback()
return result
def infer_dynamic(
context: np.array,
numseqs=1,
gen_len=80,
soft_embeddings: Optional[np.array] = None,
soft_tokens: Optional[np.array] = None,
excluded_world_info = None,
use_callback=True,
) -> Tuple[List[np.array], int, bool, bool]:
assert excluded_world_info is not None
maps.thread_resources.env = thread_resources_env
total_batch = 1
tokens = context
if(soft_tokens is not None):
tokens = np.uint32(np.concatenate((np.tile(soft_tokens, (tokens.shape[0], 1)), tokens), axis=-1))
provided_ctx = tokens.shape[-1]
pad_amount = seq - provided_ctx
padded_tokens = np.pad(tokens, ((0, 0), (pad_amount, 0)), constant_values=pad_token_id)
batched_tokens = np.array([padded_tokens] * total_batch)
samples = []
output = network.generate_dynamic(
batched_tokens,
np.ones(total_batch, dtype=np.uint32) * provided_ctx,
np.ones(total_batch, dtype=np.uint32) * gen_len,
numseqs,
soft_embeddings=soft_embeddings,
excluded_world_info=excluded_world_info,
use_callback=use_callback,
)
for out in output[0]:
samples.append(out[0][params["seq"] : params["seq"] + gen_len])
return (samples,) + output[1:]
def infer_static(
context: np.array,
top_p=0.9,
temp=0.5,
top_k=0,
tfs=1.0,
typical=1.0,
top_a=0.0,
repetition_penalty=1.0,
rpslope=0.0,
rprange=0,
numseqs=1,
gen_len=80,
soft_embeddings: Optional[np.array] = None,
soft_tokens: Optional[np.array] = None,
sampler_order: Optional[List[int]] = None,
) -> List[np.array]:
maps.thread_resources.env = thread_resources_env
if sampler_order is None:
sampler_order = utils.default_sampler_order.copy()
sampler_order = sampler_order[:]
if len(sampler_order) < 7: # Add repetition penalty at beginning if it's not present
sampler_order = [6] + sampler_order
sampler_order = np.uint32(sampler_order)
total_batch = 1
tokens = context
if(soft_tokens is not None):
tokens = np.uint32(np.concatenate((soft_tokens, tokens)))
provided_ctx = tokens.shape[0]
pad_amount = seq - provided_ctx
padded_tokens = np.pad(tokens, ((pad_amount, 0),), constant_values=pad_token_id)
batched_tokens = np.array([padded_tokens] * total_batch)
samples = []
batched_generator_params = {
"sampler_order": np.repeat(sampler_order[np.newaxis], total_batch, axis=0),
"temp": temp * np.ones(total_batch),
"top_p": top_p * np.ones(total_batch),
"tfs": tfs * np.ones(total_batch),
"typical": typical * np.ones(total_batch),
"top_a": top_a * np.ones(total_batch),
"repetition_penalty": repetition_penalty * np.ones(total_batch),
"rpslope": rpslope * np.ones(total_batch),
"rprange": np.full(total_batch, rprange, dtype=np.uint32),
"top_k": np.full(total_batch, top_k, dtype=np.uint32)
}
output = network.generate_static(
batched_tokens,
np.ones(total_batch, dtype=np.uint32) * provided_ctx,
np.ones(total_batch, dtype=np.uint32) * gen_len,
numseqs,
batched_generator_params,
soft_embeddings=soft_embeddings,
)[0]
for o in output:
samples.append(o[0][0, 0, params["seq"] : params["seq"] + gen_len])
return samples
def reshard_reverse(x, total_shards, old_shape):
assert len(x.shape) != 1
if len(x.shape) == 2:
if old_shape[1] == x.shape[1]:
out = x[0:1].tile((total_shards, 1))
else:
out = x.reshape(old_shape)
elif len(x.shape) == 3:
if x.shape[0] * x.shape[2] == old_shape[2]:
out = x.reshape(old_shape)
elif x.shape[0] * x.shape[1] == old_shape[1]:
out = x.reshape((old_shape[1], old_shape[0], old_shape[2])).permute((1, 0, 2))
else:
assert False
else:
assert False
return out
def get_old_shape(t, total_shards, dim=2):
if len(t.shape) == 2:
shard_shape = t.shape
if dim == 1:
assert shard_shape[0] % total_shards == 0
return (shard_shape[0] // total_shards, shard_shape[1])
elif dim == 2:
assert shard_shape[1] % total_shards == 0
return (shard_shape[0], shard_shape[1] // total_shards)
else:
raise ValueError(f"Unsupported dim {dim}")
if len(t.shape) == 1:
assert t.shape[0] % total_shards == 0
return (t.shape[0] // total_shards,)
else:
raise ValueError(f"Unsupported shape {t.shape}")
def read_neox_checkpoint(state, path, config, checkpoint_shards=2):
assert config["cores_per_replica"] % checkpoint_shards == 0
output_shards = config["cores_per_replica"] // checkpoint_shards
import torch
import torch.utils.dlpack
import torch_lazy_loader
from tqdm.auto import tqdm
move_xmap = jax.experimental.maps.xmap(
fun=lambda x, _: to_bf16(x),
in_axes=(["shard", ...], ["batch", ...]),
out_axes=["shard", ...],
axis_resources={'shard': 'mp', 'batch': 'dp'}
)
path_template = os.path.join(path, "layer_{layer:02d}-model_{shard:02d}-model_states.pt")
static_mapping = {
"word_embeddings.weight": {"module": "embedding_shard/~/linear", "param": "w", "axis": 1},
"final_linear.weight": {"module": "projection_shard/~/linear", "param": "w", "axis": 2},
"norm.weight": {"module": "projection_shard/~/replicated_layer_norm", "param": "scale", "axis": None},
"norm.bias": {"module": "projection_shard/~/replicated_layer_norm", "param": "offset", "axis": None},
}
layer_mapping = {
"attention.query_key_value.weight": {"module": "combined_qkv", "param": "w", "axis": 2},
"attention.query_key_value.bias": {"module": "combined_qkv", "param": "b", "axis": 1},
"attention.dense.weight": {"module": "linear_3", "param": "w", "axis": 1},
"attention.dense.bias": {"module": "linear_3", "param": "b", "axis": None},
"mlp.dense_h_to_4h.weight": {"module": "linear_4", "param": "w", "axis": 2},
"mlp.dense_h_to_4h.bias": {"module": "linear_4", "param": "b", "axis": 1},
"mlp.dense_4h_to_h.weight": {"module": "linear_5", "param": "w", "axis": 1},
"mlp.dense_4h_to_h.bias": {"module": "linear_5", "param": "b", "axis": None},
"input_layernorm.weight": {"module": "replicated_layer_norm", "param": "scale", "axis": None},
"input_layernorm.bias": {"module": "replicated_layer_norm", "param": "offset", "axis": None},
"post_attention_layernorm.weight": {"module": "replicated_layer_norm_1", "param": "scale", "axis": None},
"post_attention_layernorm.bias": {"module": "replicated_layer_norm_1", "param": "offset", "axis": None},
}
tqdm_length = len(static_mapping) + config["layers"]*len(layer_mapping)
bar = tqdm(total=tqdm_length, desc="Loading from NeoX checkpoint")
for checkpoint_layer in range(config["layers"] + 5):
if checkpoint_layer in (1, config["layers"] + 2):
continue
layer = checkpoint_layer - 2
shards = []
with torch_lazy_loader.use_custom_unpickler(torch_lazy_loader.RestrictedUnpickler):