-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrace.py
296 lines (268 loc) · 10.8 KB
/
trace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import logging
import random
import tkinter as tk
import tkinter.filedialog
from pathlib import Path
import argparse
import sys
import cv2
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import skimage.draw as draw
import torch
from PIL import Image, ImageTk
from mmcv import VideoReader
from baidu import BaiduAPI
# 配置logger
logger = logging.getLogger('watermark-tracer')
plt.rcParams['font.family'] = 'SimHei'
def detect_watermark_from_video_result(frames, res, threshold=0.1):
res: pd.DataFrame = res.sort_values(by='confidence', ascending=False)
frames_np = [np.array(i) for i in frames]
# 提取最高置信度
res = res[res['confidence'] > threshold]
print("检测结果:\n", res)
w1, h1, w2, h2 = [int(i) for i in res.loc[0].to_list()[:4]]
wms = [i[h1:h2, w1:w2] for i in frames_np] # watermarks
# 增强水印
wm = estimate_watermark_from_images(wms)
return wm, [(w1, h1, w2, h2), ]
def detect_watermark_from_img_result(img, res, err_ratio=0.05, threshold=0.1):
res: pd.DataFrame = res.sort_values(by='confidence', ascending=False)
img_np = np.array(img)
# 以最高置信度为主,假如有其他大小相当的检测框则合并
width, height = None, None
for i, box in res.iterrows():
w, h = box['xmax'] - box['xmin'], box['ymax'] - box['ymin']
if width is None: # first run
width, height = w, h
continue
if w > width * (1 + err_ratio) or w < width * (1 - err_ratio) \
or h > height * (1 + err_ratio) or h < height * (1 - err_ratio):
res.loc[i, 'class'] = 1
if box['confidence'] < threshold:
res.loc[i, 'class'] = 1
res_less = res.drop(index=res[res['class'] == 1].index)
print("检测结果:\n", res)
boxes = [list(map(int, i[1:5])) for i in res_less.itertuples()]
# 假如少于等于5个,直接返回,否则根据多幅图像提取水印
if len(res) <= 5:
print("未使用增强")
# w1, h1, w2, h2 = boxes[0]
w1, h1, w2, h2 = random.choice(boxes)
return img_np[h1:h2, w1:w2], boxes
else:
print("增强")
# 把所有子图都resize到相同大小
wms = [] # watermarks
for w1, h1, w2, h2 in boxes:
i = img_np[h1:h2, w1:w2]
i = Image.fromarray(i).resize((int(width), int(height)))
wms.append(np.array(i))
# 增强水印
wm = estimate_watermark_from_images(wms)
return wm, [list(map(int, i[1:5])) for i in res.itertuples()]
def estimate_watermark_from_images(imgs: list, enhance: int = 50):
# 估计水印
grad_x = list(map(lambda x: cv2.Sobel(x, cv2.CV_64F, 1, 0, ksize=3), imgs))
grad_y = list(map(lambda x: cv2.Sobel(x, cv2.CV_64F, 0, 1, ksize=3), imgs))
Wm_x = np.median(np.array(grad_x), axis=0)
Wm_y = np.median(np.array(grad_y), axis=0)
# plt.subplot(311) # DEBUG
# plt.imshow(np.abs(Wm_x ** 2 + Wm_y ** 2) / np.max(Wm_x ** 2 + Wm_y ** 2)) # DEBUG
# ax = plt.gca()
# ax.axes.xaxis.set_visible(False)
# ax.axes.yaxis.set_visible(False)
est = poisson_reconstruct(Wm_x, Wm_y)
# 转换成255的
est: np.ndarray = 255 * (est - np.min(est)) / (np.max(est) - np.min(est))
est = est.astype(np.uint8)
# DEBUG
# plt.subplot(312) # DEBUG
# plt.imshow(est) # DEBUG
# ax = plt.gca()
# ax.axes.xaxis.set_visible(False)
# ax.axes.yaxis.set_visible(False)
# 寻找增强区域的模版
channels = []
for i in range(est.shape[-1]):
# 二值化
blur = cv2.GaussianBlur(est[:, :, i], (5, 5), 0)
ret, th = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
channels.append(th)
mask = np.zeros_like(channels[0]).astype(bool)
for c in channels:
mask = mask | c.astype(bool)
mask = mask[:, :, np.newaxis].repeat(3, axis=2)
# print(mask.shape, est.shape)
# print(mask.dtype, est.dtype)
# plt.figure(2)
# plt.subplot(211)
# plt.imshow(mask.astype(int)*255)
# plt.subplot(212)
# plt.imshow(est)
# plt.show()
# 增强
est = est + enhance * mask
est: np.ndarray = 255 * (est - np.min(est)) / (np.max(est) - np.min(est))
est = est.astype(np.uint8)
# DEBUG
# plt.subplot(313)
# plt.imshow(est)
# ax = plt.gca()
# ax.axes.xaxis.set_visible(False)
# ax.axes.yaxis.set_visible(False)
# plt.show()
return est
def poisson_reconstruct(gradx, grady, kernel_size=3, num_iters=100, h=0.1,
boundary_image=None, boundary_zero=True):
"""
Iterative algorithm for Poisson reconstruction.
Given the gradx and grady values, find laplacian, and solve for images
Also return the squared difference of every step.
h = convergence rate
"""
fxx = cv2.Sobel(gradx, cv2.CV_64F, 1, 0, ksize=kernel_size)
fyy = cv2.Sobel(grady, cv2.CV_64F, 0, 1, ksize=kernel_size)
laplacian = fxx + fyy
m, n, p = laplacian.shape
if boundary_zero is True:
est = np.zeros(laplacian.shape)
else:
assert (boundary_image is not None)
assert (boundary_image.shape == laplacian.shape)
est = boundary_image.copy()
est[1:-1, 1:-1, :] = np.random.random((m - 2, n - 2, p))
loss = []
for i in range(num_iters):
old_est = est.copy()
est[1:-1, 1:-1, :] = 0.25 * (
est[0:-2, 1:-1, :] + est[1:-1, 0:-2, :] +
est[2:, 1:-1, :] + est[1:-1, 2:, :] -
h * h * laplacian[1:-1, 1:-1, :]
)
error = np.sum(np.square(est - old_est))
loss.append(error)
return est
if __name__ == "__main__":
# 选择输入
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--image', required=False, type=str, help="输入图片路径,假如没有则调用对话框进行选择")
parser.add_argument('--no_tk', action="store_true", help="是否使用tkinter")
parser.add_argument('--no_api', action="store_true", help="是否使用百度API")
args = parser.parse_args()
if args.image is not None:
file_path = args.image
else:
# GUI选择图片/视频
root = tk.Tk()
file_path = tkinter.filedialog.askopenfilename(
multiple=False,
filetypes=[('图片', '.jpg'), ('图片', '.png'), ('视频', '.mp4')]
)
root.destroy()
file_path = Path(file_path)
if file_path.is_file() is False:
logger.error("未选择资源")
sys.exit()
# 提取
if file_path.suffix in ['.jpg', '.png', '.jpeg']: # 图片
file_type = 'image'
imgs = [Image.open(file_path).convert('RGB')]
else: # 视频(平均抽取10帧)
file_type = 'video'
video = VideoReader(str(file_path))
indices = np.linspace(2, video.frame_cnt - 2, 10).astype(int)
imgs = [Image.fromarray(video.get_frame(i)[:, :, ::-1]) for i in indices]
# 加载模型
logger.info("开始加载YoloV5模型")
model = torch.hub.load('yolov5', 'custom', path='yolov5/best.pt', source='local')
model = model.cpu()
matplotlib.use('Qt5Agg')
logger.info("YoloV5加载成功")
# 检测
logger.info("检测中")
results = model(imgs)
# 提取水印
results = results.pandas().xyxy
if file_type == 'image':
if len(results[0]) == 0:
logger.error("Yolo检测失败")
sys.exit()
test_wm, box = detect_watermark_from_img_result(imgs[0], results[0])
elif file_type == 'video':
idx = -1
for i, result_item in enumerate(results):
if len(result_item) != 0:
idx = i
break
if idx == -1:
logger.error("Yolo检测失败")
print(results)
sys.exit()
test_wm, box = detect_watermark_from_video_result(imgs, results[idx])
else:
raise ValueError
# 溯源
if args.no_api is False:
try:
api = BaiduAPI('baidu_cfg.json')
# 获取百度API的结果
mark_res = api.detect_mark(Image.fromarray(test_wm))
ocr_res = api.detect_text(Image.fromarray(test_wm))
ocr_words: str = ocr_res['words_result'][0]['words'] if ocr_res['words_result_num'] >= 1 else None
# if '@' in ocr_words:
# ocr_words = ocr_words[ocr_words.index('@'):]
# 依据逻辑判断
if mark_res['result_num'] > 0 and mark_res['result'][0]['probability'] >= 0.7: # logo识别成功
if ocr_res['words_result_num'] >= 1: # OCR成功
search_res = api.search(ocr_words)
else: # OCR失败
search_res = api.search(mark_res['result'][0]['name'])
output = f"检测到可能的水印来源:{mark_res['result'][0]['name']}\n" + \
f"以下是详细信息:\n{search_res[0]['title']} \n{search_res[0]['href']} \n{search_res[0]['summary']}\n" + \
"获取方式:百度Logo识别+搜索引擎"
elif ocr_res['words_result_num'] >= 1: # OCR成功
search_res = api.search(ocr_words)
output = f"检测到可能的水印来源:{ocr_words}\n" + \
f"以下是详细信息:\n{search_res[0]['title']} \n{search_res[0]['href']} \n{search_res[0]['summary']}\n" + \
"获取方式:百度OCR+搜索引擎"
else: # logo和OCR都失败
output = "溯源失败"
except Exception:
output = "API调用错误"
else:
output = "API调用错误"
print(output)
# 展示
new_img = np.array(imgs[0])
for point in box:
rr, cc = draw.rectangle_perimeter(point[:2], end=point[2:], shape=imgs[0].size)
new_img[cc, rr] = (0, 255, 255)
new_img = Image.fromarray(new_img)
if args.no_tk is False:
root = tk.Tk() # 创建一个Tkinter.Tk()实例
frame_l = tk.Frame(master=root, relief=tk.RAISED, borderwidth=1)
frame_l.grid(row=0, column=0)
_new_img = new_img.resize((int(new_img.width / new_img.height * 400), 400))
_source_photo = ImageTk.PhotoImage(_new_img)
label1 = tk.Label(master=frame_l, image=_source_photo)
label1.pack()
frame_r = tk.Frame(master=root, relief=tk.RAISED, borderwidth=1)
frame_r.grid(row=0, column=1)
_test_wm = Image.fromarray(test_wm)
_photo = ImageTk.PhotoImage(_test_wm)
label2 = tk.Label(master=frame_r, image=_photo, bg='gray')
label2.grid(row=0, column=0)
label3 = tk.Label(master=frame_r, text=output, justify=tk.LEFT, wraplength=300) # , width=30
label3.grid(row=1, column=0)
root.mainloop()
else:
plt.figure(1)
plt.subplot(121)
plt.imshow(new_img)
plt.subplot(122)
plt.imshow(test_wm)
plt.show()