-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathpredict_video.py
188 lines (163 loc) · 7.03 KB
/
predict_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import numpy as np
import torch
from torch import Tensor
from typing import Optional, List
import argparse
import pathlib
import matplotlib.pyplot as plt
import seaborn
import types
from model.MMT4Caption import MMT4Caption
from dataloader import build_dataloader
from utils import configure_hardware, Config
from eval import v2t_batch
def check_validity(args):
pass
def extract_feat(args):
# useful attributes
args.extract_method = args.ext_type
args.feature_type = args.feat_type[0]
args.video_paths = [args.video]
# useless attribute
args.extraction_fps = None
args.file_with_video_paths = None
args.flow_dir = None
args.flow_paths = None
args.video_dir = None
args.on_extraction = None
from submodules.video_features.models.CLIP.extract_clip import ExtractCLIP
extractor = ExtractCLIP(args, external_call=True)
feats_list = extractor(torch.zeros([1], dtype=torch.long))[0][args.feature_type]
feats_list = torch.from_numpy(feats_list).unsqueeze(0)
return [feats_list]
# Code from Pytorch TransformerDecoderLayer forward()
# Modified to save attention map
def attn_forward(self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None) -> Tensor:
r"""Pass the inputs (and mask) through the decoder layer.
Args:
tgt: the sequence to the decoder layer (required).
memory: the sequence from the last layer of the encoder (required).
tgt_mask: the mask for the tgt sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
tgt2, sa = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
tgt2, mha = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
# Extracted attention map:
# save to 'self'
# sa : (1, L, L)
# mha: (1, L, S)
if hasattr(self, 'mha'):
self.mha = torch.cat([self.mha, mha[:, -1:, :]], dim=1)
# print("yes")
else:
self.mha = mha
return tgt
def visualize(layers: List[torch.nn.TransformerDecoderLayer],
caption: Optional[str] = None, feat_lens: Optional[list] = None):
"""
:param feat_lens: length of each feature
:param caption: Caption of video
:param layers: Modified TransformerDecoderLayer, which contains .sa & .mha attributes
:return: None
"""
mha_maps = [i.mha.squeeze(0).cpu() for i in layers]
avg_map = torch.mean(torch.stack(mha_maps), dim=0)
# for i, attn_map in enumerate(mha_maps + [avg_map]):
# plt.figure(i+1, figsize=(10, 10))
# seaborn.heatmap(
# attn_map.numpy().T,
# xticklabels=caption.split(' ') + ['SEP'],
# yticklabels=['G'] + ['m1'] * feat_lens[0] + ['G'] + ['m2'] * feat_lens[1],
# annot=True
# )
plt.figure(figsize=(10, 10))
seaborn.heatmap(
avg_map.numpy().T,
xticklabels=caption.split(' ') + ['SEP'],
# yticklabels=['G'] + ['m1'] * feat_lens[0] + ['G'] + ['m2'] * feat_lens[1],
annot=True
)
plt.show()
def predict(cfg, local_args):
# Obtain features
if local_args.video is not None:
feats = extract_feat(local_args)
else:
feats = [torch.tensor(np.load(i), dtype=torch.float32, device=local_args.device).unsqueeze(0)
for i in local_args.features]
# print(type(feats))
feat_lens = [i.shape[1] for i in feats]
# Build model
model = MMT4Caption(cfg['model'], device=local_args.device).to(local_args.device)
model.mode("caption")
load_state = model.load_state_dict(
torch.load(local_args.model, map_location=local_args.device), strict=False
)
print(f"Load state: {load_state}")
layers = []
for layer in model.cap_decoder.decoder.layers:
funcType = types.MethodType
layer.forward = funcType(attn_forward, layer)
layers.append(layer)
# Evaluate
model.eval()
result = v2t_batch(model, feats, None, max_len=cfg['test']['max_length'], local_args=local_args)[0]
# Output
if local_args.features is not None:
video_id = pathlib.Path(local_args.features[0]).stem
else:
video_id = pathlib.Path(local_args.video).stem
print(f"{video_id}\t:{result}")
# [Optional] visualize attention maps
if local_args.vis_attn:
visualize(layers, caption=result, feat_lens=feat_lens)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", required=True, type=str, help="The path of '.json' config file")
parser.add_argument("-m", "--model", required=True, type=str, help="The path of model checkpoint")
# input argument
# You can select video as input or features in .npy format as input
# Note: The shape of numpy array should be (T, C), where T means temporal dimension
input_group = parser.add_mutually_exclusive_group(required=True)
input_group.add_argument("-v", "--video", type=str, help="The path of input video")
input_group.add_argument("-f", "--features", nargs='+', type=str, help="The paths of input features of a video")
# if choose -v
parser.add_argument("--feat_type", nargs='+', type=str, choices=["CLIP", "I3D", "CLIP4CLIP-ViT-B-32"],
help="the type of feature extractor(s)")
parser.add_argument("--ext_type", type=str,
help="How to extract video frames.\n Format: [type]_[param]\n Example: fps_2 fix_20 tsn_12")
# device argument
device_group = parser.add_mutually_exclusive_group(required=True) # Multi-GPU not supported
device_group.add_argument("--cpu", action="store_true", help="use cpu or not")
device_group.add_argument("--gpu", action="store_true", help="use gpu or not")
# generation argument
gen_group = parser.add_mutually_exclusive_group(required=True)
gen_group.add_argument("--greedy", action="store_true", help="greedy decode")
gen_group.add_argument("--beam", type=int, help="beam search decode(not support yet)")
# others
parser.add_argument("--vis_attn", action="store_true", help="Visualize the attention weights")
args_ = parser.parse_args()
# check validity of arguments
# args_ = check_validity(args_)
# configure hardware
args_ = configure_hardware(args_)
# load config
cfg_ = Config(args_.config)
if args_.is_main_rank:
cfg_.display()
predict(cfg_.data, args_)