-
Notifications
You must be signed in to change notification settings - Fork 173
/
Copy pathresnet_dynamic.py
734 lines (635 loc) · 22.1 KB
/
resnet_dynamic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
"""
Dynamic ResNet from `"Dynamic Domain Generalization" <https://github.com/MetaVisionLab/DDG>`_.
"""
from typing import Any, List, Type, Union, Callable, Optional
from collections import OrderedDict
import torch
import torch.nn as nn
from torch import Tensor
from torch.hub import load_state_dict_from_url
from dassl.modeling.ops import MixStyle, Conv2dDynamic
from .build import BACKBONE_REGISTRY
from .backbone import Backbone
__all__ = [
"resnet18_dynamic", "resnet50_dynamic", "resnet101_dynamic",
"resnet18_dynamic_ms_l123", "resnet18_dynamic_ms_l12",
"resnet18_dynamic_ms_l1", "resnet50_dynamic_ms_l123",
"resnet50_dynamic_ms_l12", "resnet50_dynamic_ms_l1",
"resnet101_dynamic_ms_l123", "resnet101_dynamic_ms_l12",
"resnet101_dynamic_ms_l1"
]
model_urls = {
"resnet18_dynamic":
"https://csip.fzu.edu.cn/files/models/resnet18_dynamic-074db766.pth",
"resnet50_dynamic":
"https://csip.fzu.edu.cn/files/models/resnet50_dynamic-2c3b0201.pth",
"resnet101_dynamic":
"https://csip.fzu.edu.cn/files/models/resnet101_dynamic-c5f15780.pth",
}
def conv3x3(
in_planes: int,
out_planes: int,
stride: int = 1,
groups: int = 1,
dilation: int = 1
) -> nn.Conv2d:
"""3x3 convolution with padding"""
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=dilation,
groups=groups,
bias=False,
dilation=dilation
)
def conv3x3_dynamic(
in_planes: int,
out_planes: int,
stride: int = 1,
attention_in_channels: int = None
) -> Conv2dDynamic:
"""3x3 convolution with padding"""
return Conv2dDynamic(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=1,
bias=False,
attention_in_channels=attention_in_channels
)
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
"""1x1 convolution"""
return nn.Conv2d(
in_planes, out_planes, kernel_size=1, stride=stride, bias=False
)
def load_state_dict(
model: nn.Module,
state_dict: "OrderedDict[str, Tensor]",
allowed_missing_keys: List = None
):
r"""Copies parameters and buffers from :attr:`state_dict` into
this module and its descendants. If :attr:`strict` is ``True``, then
the keys of :attr:`state_dict` must exactly match the keys returned
by this module's :meth:`~torch.nn.Module.state_dict` function.
Args:
model (torch.nn.Module): a torch.nn.Module object where state_dict load for.
state_dict (dict): a dict containing parameters and
persistent buffers.
allowed_missing_keys (List, optional): not raise `RuntimeError` if missing_keys
equal to allowed_missing_keys.
Returns:
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* **missing_keys** is a list of str containing the missing keys
* **unexpected_keys** is a list of str containing the unexpected keys
Note:
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in :attr:`state_dict`, :meth:`load_state_dict` will raise a
``RuntimeError``.
"""
missing_keys, unexpected_keys = model.load_state_dict(
state_dict, strict=allowed_missing_keys is None
)
msgs: List[str] = []
raise_error = False
if len(unexpected_keys) > 0:
raise_error = True
msgs.insert(
0, "Unexpected key(s) in state_dict: {}. ".format(
", ".join("'{}'".format(k) for k in unexpected_keys)
)
)
if len(missing_keys) > 0:
if allowed_missing_keys is None or sorted(missing_keys) != sorted(
allowed_missing_keys
):
raise_error = True
msgs.insert(
0, "Missing key(s) in state_dict: {}. ".format(
", ".join("'{}'".format(k) for k in missing_keys)
)
)
if raise_error:
raise RuntimeError(
"Error(s) in loading state_dict for {}:\n\t{}".format(
model.__class__.__name__, "\n\t".join(msgs)
)
)
if len(msgs) > 0:
print(
"\nInfo(s) in loading state_dict for {}:\n\t{}".format(
model.__class__.__name__, "\n\t".join(msgs)
)
)
class BasicBlock(nn.Module):
expansion: int = 1
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError(
"BasicBlock only supports groups=1 and base_width=64"
)
if dilation > 1:
raise NotImplementedError(
"Dilation > 1 not supported in BasicBlock"
)
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion: int = 4
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width/64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class BasicBlockDynamic(nn.Module):
expansion: int = 1
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super(BasicBlockDynamic, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError(
"BasicBlock only supports groups=1 and base_width=64"
)
if dilation > 1:
raise NotImplementedError(
"Dilation > 1 not supported in BasicBlock"
)
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3_dynamic(
inplanes, planes, stride, attention_in_channels=inplanes
)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3_dynamic(
planes, planes, attention_in_channels=inplanes
)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x, attention_x=x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out, attention_x=x)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class BottleneckDynamic(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion: int = 4
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super(BottleneckDynamic, self).__init__()
if groups != 1:
raise ValueError("BottleneckDynamic only supports groups=1")
if dilation > 1:
raise NotImplementedError(
"Dilation > 1 not supported in BottleneckDynamic"
)
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width/64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3_dynamic(
width, width, stride, attention_in_channels=inplanes
)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out, attention_x=x)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(Backbone):
def __init__(
self,
block: Type[Union[BasicBlock, Bottleneck, BasicBlockDynamic,
BottleneckDynamic]],
layers: List[int],
has_fc: bool = True,
num_classes: int = 1000,
zero_init_residual: bool = False,
groups: int = 1,
width_per_group: int = 64,
replace_stride_with_dilation: Optional[List[bool]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
ms_class=None,
ms_layers=None,
ms_p=0.5,
ms_a=0.1
) -> None:
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError(
"replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".
format(replace_stride_with_dilation)
)
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(
3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False
)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(
block,
128,
layers[1],
stride=2,
dilate=replace_stride_with_dilation[0]
)
self.layer3 = self._make_layer(
block,
256,
layers[2],
stride=2,
dilate=replace_stride_with_dilation[1]
)
self.layer4 = self._make_layer(
block,
512,
layers[3],
stride=2,
dilate=replace_stride_with_dilation[2]
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.has_fc = has_fc
self._out_features = 512 * block.expansion
if has_fc:
self.fc = nn.Linear(self.out_features, num_classes)
self._out_features = num_classes
if ms_class is not None and ms_layers is not None:
self.ms_class = ms_class(p=ms_p, alpha=ms_a)
for layer in ms_layers:
assert layer in ["layer1", "layer2", "layer3"]
self.ms_layers = ms_layers
else:
self.ms_class = None
self.ms_layers = []
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode="fan_out", nonlinearity="relu"
)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(
self,
block: Type[Union[BasicBlock, Bottleneck]],
planes: int,
blocks: int,
stride: int = 1,
dilate: bool = False
) -> nn.Sequential:
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(
block(
self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer
)
)
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(
block(
self.inplanes,
planes,
groups=self.groups,
base_width=self.base_width,
dilation=self.dilation,
norm_layer=norm_layer
)
)
return nn.Sequential(*layers)
def _forward_impl(self, x: Tensor) -> Tensor:
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
if "layer1" in self.ms_layers:
x = self.ms_class(x)
x = self.layer2(x)
if "layer2" in self.ms_layers:
x = self.ms_class(x)
x = self.layer3(x)
if "layer3" in self.ms_layers:
x = self.ms_class(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
if self.has_fc:
x = self.fc(x)
return x
def forward(self, x: Tensor) -> Tensor:
return self._forward_impl(x)
def _resnet(
arch: str, block: Type[Union[BasicBlock, Bottleneck, BasicBlockDynamic,
BottleneckDynamic]], layers: List[int],
pretrained: bool, progress: bool, **kwargs: Any
) -> ResNet:
model = ResNet(block, layers, **kwargs)
if pretrained:
state_dict = load_state_dict_from_url(
model_urls[arch], progress=progress
)
# remove useless keys from sate_dict 1. no fc; 2. out_features != 1000.
removed_keys = model.has_fc is False or (
model.has_fc is True and model.out_features != 1000
)
removed_keys = ["fc.weight", "fc.bias"] if removed_keys else []
for key in removed_keys:
state_dict.pop(key)
# if has fc, then allow missing key, else strict load state_dict.
allowed_missing_keys = removed_keys if model.has_fc else None
load_state_dict(model, state_dict, allowed_missing_keys)
return model
@BACKBONE_REGISTRY.register()
def resnet18_dynamic(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet18_dynamic",
BasicBlockDynamic, [2, 2, 2, 2],
pretrained=pretrained,
progress=True,
has_fc=False
)
return model
@BACKBONE_REGISTRY.register()
def resnet50_dynamic(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet50_dynamic",
BottleneckDynamic, [3, 4, 6, 3],
pretrained=pretrained,
progress=True,
has_fc=False
)
return model
@BACKBONE_REGISTRY.register()
def resnet101_dynamic(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet101_dynamic",
BottleneckDynamic, [3, 4, 23, 3],
pretrained=pretrained,
progress=True,
has_fc=False
)
return model
@BACKBONE_REGISTRY.register()
def resnet18_dynamic_ms_l123(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet18_dynamic",
BasicBlockDynamic, [2, 2, 2, 2],
pretrained=pretrained,
progress=True,
has_fc=False,
ms_class=MixStyle,
ms_layers=["layer1", "layer2", "layer3"]
)
return model
@BACKBONE_REGISTRY.register()
def resnet18_dynamic_ms_l12(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet18_dynamic",
BasicBlockDynamic, [2, 2, 2, 2],
pretrained=pretrained,
progress=True,
has_fc=False,
ms_class=MixStyle,
ms_layers=["layer1", "layer2"]
)
return model
@BACKBONE_REGISTRY.register()
def resnet18_dynamic_ms_l1(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet18_dynamic",
BasicBlockDynamic, [2, 2, 2, 2],
pretrained=pretrained,
progress=True,
has_fc=False,
ms_class=MixStyle,
ms_layers=["layer1"]
)
return model
@BACKBONE_REGISTRY.register()
def resnet50_dynamic_ms_l123(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet50_dynamic",
BottleneckDynamic, [3, 4, 6, 3],
pretrained=pretrained,
progress=True,
has_fc=False,
ms_class=MixStyle,
ms_layers=["layer1", "layer2", "layer3"]
)
return model
@BACKBONE_REGISTRY.register()
def resnet50_dynamic_ms_l12(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet50_dynamic",
BottleneckDynamic, [3, 4, 6, 3],
pretrained=pretrained,
progress=True,
has_fc=False,
ms_class=MixStyle,
ms_layers=["layer1", "layer2"]
)
return model
@BACKBONE_REGISTRY.register()
def resnet50_dynamic_ms_l1(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet50_dynamic",
BottleneckDynamic, [3, 4, 6, 3],
pretrained=pretrained,
progress=True,
has_fc=False,
ms_class=MixStyle,
ms_layers=["layer1"]
)
return model
@BACKBONE_REGISTRY.register()
def resnet101_dynamic_ms_l123(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet101_dynamic",
BottleneckDynamic, [3, 4, 23, 3],
pretrained=pretrained,
progress=True,
has_fc=False,
ms_class=MixStyle,
ms_layers=["layer1", "layer2", "layer3"]
)
return model
@BACKBONE_REGISTRY.register()
def resnet101_dynamic_ms_l12(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet101_dynamic",
BottleneckDynamic, [3, 4, 23, 3],
pretrained=pretrained,
progress=True,
has_fc=False,
ms_class=MixStyle,
ms_layers=["layer1", "layer2"]
)
return model
@BACKBONE_REGISTRY.register()
def resnet101_dynamic_ms_l1(pretrained=True, **kwargs) -> ResNet:
model = _resnet(
"resnet101_dynamic",
BottleneckDynamic, [3, 4, 23, 3],
pretrained=pretrained,
progress=True,
has_fc=False,
ms_class=MixStyle,
ms_layers=["layer1"]
)
return model