-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathmodels.py
178 lines (151 loc) · 8.48 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from typing import Optional, List
import torch
from torch import jit, nn
from torch.nn import functional as F
# Wraps the input tuple for a function to process a time x batch x features sequence in batch x features (assumes one output)
def bottle(f, x_tuple):
x_sizes = tuple(map(lambda x: x.size(), x_tuple))
y = f(*map(lambda x: x[0].view(x[1][0] * x[1][1], *x[1][2:]), zip(x_tuple, x_sizes)))
y_size = y.size()
return y.view(x_sizes[0][0], x_sizes[0][1], *y_size[1:])
class TransitionModel(jit.ScriptModule):
__constants__ = ['min_std_dev']
def __init__(self, belief_size, state_size, action_size, hidden_size, embedding_size, activation_function='relu', min_std_dev=0.1):
super().__init__()
self.act_fn = getattr(F, activation_function)
self.min_std_dev = min_std_dev
self.fc_embed_state_action = nn.Linear(state_size + action_size, belief_size)
self.rnn = nn.GRUCell(belief_size, belief_size)
self.fc_embed_belief_prior = nn.Linear(belief_size, hidden_size)
self.fc_state_prior = nn.Linear(hidden_size, 2 * state_size)
self.fc_embed_belief_posterior = nn.Linear(belief_size + embedding_size, hidden_size)
self.fc_state_posterior = nn.Linear(hidden_size, 2 * state_size)
# Operates over (previous) state, (previous) actions, (previous) belief, (previous) nonterminals (mask), and (current) observations
# Diagram of expected inputs and outputs for T = 5 (-x- signifying beginning of output belief/state that gets sliced off):
# t : 0 1 2 3 4 5
# o : -X--X--X--X--X-
# a : -X--X--X--X--X-
# n : -X--X--X--X--X-
# pb: -X-
# ps: -X-
# b : -x--X--X--X--X--X-
# s : -x--X--X--X--X--X-
@jit.script_method
def forward(self, prev_state:torch.Tensor, actions:torch.Tensor, prev_belief:torch.Tensor, observations:Optional[torch.Tensor]=None, nonterminals:Optional[torch.Tensor]=None) -> List[torch.Tensor]:
# Create lists for hidden states (cannot use single tensor as buffer because autograd won't work with inplace writes)
T = actions.size(0) + 1
beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs = [torch.empty(0)] * T, [torch.empty(0)] * T, [torch.empty(0)] * T, [torch.empty(0)] * T, [torch.empty(0)] * T, [torch.empty(0)] * T, [torch.empty(0)] * T
beliefs[0], prior_states[0], posterior_states[0] = prev_belief, prev_state, prev_state
# Loop over time sequence
for t in range(T - 1):
_state = prior_states[t] if observations is None else posterior_states[t] # Select appropriate previous state
_state = _state if nonterminals is None else _state * nonterminals[t] # Mask if previous transition was terminal
# Compute belief (deterministic hidden state)
hidden = self.act_fn(self.fc_embed_state_action(torch.cat([_state, actions[t]], dim=1)))
beliefs[t + 1] = self.rnn(hidden, beliefs[t])
# Compute state prior by applying transition dynamics
hidden = self.act_fn(self.fc_embed_belief_prior(beliefs[t + 1]))
prior_means[t + 1], _prior_std_dev = torch.chunk(self.fc_state_prior(hidden), 2, dim=1)
prior_std_devs[t + 1] = F.softplus(_prior_std_dev) + self.min_std_dev
prior_states[t + 1] = prior_means[t + 1] + prior_std_devs[t + 1] * torch.randn_like(prior_means[t + 1])
if observations is not None:
# Compute state posterior by applying transition dynamics and using current observation
t_ = t - 1 # Use t_ to deal with different time indexing for observations
hidden = self.act_fn(self.fc_embed_belief_posterior(torch.cat([beliefs[t + 1], observations[t_ + 1]], dim=1)))
posterior_means[t + 1], _posterior_std_dev = torch.chunk(self.fc_state_posterior(hidden), 2, dim=1)
posterior_std_devs[t + 1] = F.softplus(_posterior_std_dev) + self.min_std_dev
posterior_states[t + 1] = posterior_means[t + 1] + posterior_std_devs[t + 1] * torch.randn_like(posterior_means[t + 1])
# Return new hidden states
hidden = [torch.stack(beliefs[1:], dim=0), torch.stack(prior_states[1:], dim=0), torch.stack(prior_means[1:], dim=0), torch.stack(prior_std_devs[1:], dim=0)]
if observations is not None:
hidden += [torch.stack(posterior_states[1:], dim=0), torch.stack(posterior_means[1:], dim=0), torch.stack(posterior_std_devs[1:], dim=0)]
return hidden
class SymbolicObservationModel(jit.ScriptModule):
def __init__(self, observation_size, belief_size, state_size, embedding_size, activation_function='relu'):
super().__init__()
self.act_fn = getattr(F, activation_function)
self.fc1 = nn.Linear(belief_size + state_size, embedding_size)
self.fc2 = nn.Linear(embedding_size, embedding_size)
self.fc3 = nn.Linear(embedding_size, observation_size)
@jit.script_method
def forward(self, belief, state):
hidden = self.act_fn(self.fc1(torch.cat([belief, state], dim=1)))
hidden = self.act_fn(self.fc2(hidden))
observation = self.fc3(hidden)
return observation
class VisualObservationModel(jit.ScriptModule):
__constants__ = ['embedding_size']
def __init__(self, belief_size, state_size, embedding_size, activation_function='relu'):
super().__init__()
self.act_fn = getattr(F, activation_function)
self.embedding_size = embedding_size
self.fc1 = nn.Linear(belief_size + state_size, embedding_size)
self.conv1 = nn.ConvTranspose2d(embedding_size, 128, 5, stride=2)
self.conv2 = nn.ConvTranspose2d(128, 64, 5, stride=2)
self.conv3 = nn.ConvTranspose2d(64, 32, 6, stride=2)
self.conv4 = nn.ConvTranspose2d(32, 3, 6, stride=2)
@jit.script_method
def forward(self, belief, state):
hidden = self.fc1(torch.cat([belief, state], dim=1)) # No nonlinearity here
hidden = hidden.view(-1, self.embedding_size, 1, 1)
hidden = self.act_fn(self.conv1(hidden))
hidden = self.act_fn(self.conv2(hidden))
hidden = self.act_fn(self.conv3(hidden))
observation = self.conv4(hidden)
return observation
def ObservationModel(symbolic, observation_size, belief_size, state_size, embedding_size, activation_function='relu'):
if symbolic:
return SymbolicObservationModel(observation_size, belief_size, state_size, embedding_size, activation_function)
else:
return VisualObservationModel(belief_size, state_size, embedding_size, activation_function)
class RewardModel(jit.ScriptModule):
def __init__(self, belief_size, state_size, hidden_size, activation_function='relu'):
super().__init__()
self.act_fn = getattr(F, activation_function)
self.fc1 = nn.Linear(belief_size + state_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, 1)
@jit.script_method
def forward(self, belief, state):
hidden = self.act_fn(self.fc1(torch.cat([belief, state], dim=1)))
hidden = self.act_fn(self.fc2(hidden))
reward = self.fc3(hidden).squeeze(dim=1)
return reward
class SymbolicEncoder(jit.ScriptModule):
def __init__(self, observation_size, embedding_size, activation_function='relu'):
super().__init__()
self.act_fn = getattr(F, activation_function)
self.fc1 = nn.Linear(observation_size, embedding_size)
self.fc2 = nn.Linear(embedding_size, embedding_size)
self.fc3 = nn.Linear(embedding_size, embedding_size)
@jit.script_method
def forward(self, observation):
hidden = self.act_fn(self.fc1(observation))
hidden = self.act_fn(self.fc2(hidden))
hidden = self.fc3(hidden)
return hidden
class VisualEncoder(jit.ScriptModule):
__constants__ = ['embedding_size']
def __init__(self, embedding_size, activation_function='relu'):
super().__init__()
self.act_fn = getattr(F, activation_function)
self.embedding_size = embedding_size
self.conv1 = nn.Conv2d(3, 32, 4, stride=2)
self.conv2 = nn.Conv2d(32, 64, 4, stride=2)
self.conv3 = nn.Conv2d(64, 128, 4, stride=2)
self.conv4 = nn.Conv2d(128, 256, 4, stride=2)
self.fc = nn.Identity() if embedding_size == 1024 else nn.Linear(1024, embedding_size)
@jit.script_method
def forward(self, observation):
hidden = self.act_fn(self.conv1(observation))
hidden = self.act_fn(self.conv2(hidden))
hidden = self.act_fn(self.conv3(hidden))
hidden = self.act_fn(self.conv4(hidden))
hidden = hidden.view(-1, 1024)
hidden = self.fc(hidden) # Identity if embedding size is 1024 else linear projection
return hidden
def Encoder(symbolic, observation_size, embedding_size, activation_function='relu'):
if symbolic:
return SymbolicEncoder(observation_size, embedding_size, activation_function)
else:
return VisualEncoder(embedding_size, activation_function)