-
Notifications
You must be signed in to change notification settings - Fork 102
/
Copy pathddp_test_nerf.py
120 lines (96 loc) · 4.28 KB
/
ddp_test_nerf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
# import torch.nn as nn
import torch.optim
import torch.distributed
# from torch.nn.parallel import DistributedDataParallel as DDP
import torch.multiprocessing
import numpy as np
import os
# from collections import OrderedDict
# from ddp_model import NerfNet
import time
from data_loader_split import load_data_split
from utils import mse2psnr, colorize_np, to8b
import imageio
from ddp_train_nerf import config_parser, setup_logger, setup, cleanup, render_single_image, create_nerf
import logging
logger = logging.getLogger(__package__)
def ddp_test_nerf(rank, args):
###### set up multi-processing
setup(rank, args.world_size)
###### set up logger
logger = logging.getLogger(__package__)
setup_logger()
###### decide chunk size according to gpu memory
if torch.cuda.get_device_properties(rank).total_memory / 1e9 > 14:
logger.info('setting batch size according to 24G gpu')
args.N_rand = 1024
args.chunk_size = 8192
else:
logger.info('setting batch size according to 12G gpu')
args.N_rand = 512
args.chunk_size = 4096
###### create network and wrap in ddp; each process should do this
start, models = create_nerf(rank, args)
render_splits = [x.strip() for x in args.render_splits.strip().split(',')]
# start testing
for split in render_splits:
out_dir = os.path.join(args.basedir, args.expname,
'render_{}_{:06d}'.format(split, start))
if rank == 0:
os.makedirs(out_dir, exist_ok=True)
###### load data and create ray samplers; each process should do this
ray_samplers = load_data_split(args.datadir, args.scene, split, try_load_min_depth=args.load_min_depth)
for idx in range(len(ray_samplers)):
### each process should do this; but only main process merges the results
fname = '{:06d}.png'.format(idx)
if ray_samplers[idx].img_path is not None:
fname = os.path.basename(ray_samplers[idx].img_path)
if os.path.isfile(os.path.join(out_dir, fname)):
logger.info('Skipping {}'.format(fname))
continue
time0 = time.time()
ret = render_single_image(rank, args.world_size, models, ray_samplers[idx], args.chunk_size)
dt = time.time() - time0
if rank == 0: # only main process should do this
logger.info('Rendered {} in {} seconds'.format(fname, dt))
# only save last level
im = ret[-1]['rgb'].numpy()
# compute psnr if ground-truth is available
if ray_samplers[idx].img_path is not None:
gt_im = ray_samplers[idx].get_img()
psnr = mse2psnr(np.mean((gt_im - im) * (gt_im - im)))
logger.info('{}: psnr={}'.format(fname, psnr))
im = to8b(im)
imageio.imwrite(os.path.join(out_dir, fname), im)
im = ret[-1]['fg_rgb'].numpy()
im = to8b(im)
imageio.imwrite(os.path.join(out_dir, 'fg_' + fname), im)
im = ret[-1]['bg_rgb'].numpy()
im = to8b(im)
imageio.imwrite(os.path.join(out_dir, 'bg_' + fname), im)
im = ret[-1]['fg_depth'].numpy()
im = colorize_np(im, cmap_name='jet', append_cbar=True)
im = to8b(im)
imageio.imwrite(os.path.join(out_dir, 'fg_depth_' + fname), im)
im = ret[-1]['bg_depth'].numpy()
im = colorize_np(im, cmap_name='jet', append_cbar=True)
im = to8b(im)
imageio.imwrite(os.path.join(out_dir, 'bg_depth_' + fname), im)
torch.cuda.empty_cache()
# clean up for multi-processing
cleanup()
def test():
parser = config_parser()
args = parser.parse_args()
logger.info(parser.format_values())
if args.world_size == -1:
args.world_size = torch.cuda.device_count()
logger.info('Using # gpus: {}'.format(args.world_size))
torch.multiprocessing.spawn(ddp_test_nerf,
args=(args,),
nprocs=args.world_size,
join=True)
if __name__ == '__main__':
setup_logger()
test()