-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathcamera_approx.py
208 lines (167 loc) · 8.68 KB
/
camera_approx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# ===============================================================================================================
# Copyright (c) 2019, Cornell University. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that
# the following conditions are met:
#
# * Redistributions of source code must retain the above copyright otice, this list of conditions and
# the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
# the following disclaimer in the documentation and/or other materials provided with the distribution.
#
# * Neither the name of Cornell University nor the names of its contributors may be used to endorse or
# promote products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
# WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
# TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
# OF SUCH DAMAGE.
#
# Author: Kai Zhang ([email protected])
#
# The research is based upon work supported by the Office of the Director of National Intelligence (ODNI),
# Intelligence Advanced Research Projects Activity (IARPA), via DOI/IBC Contract Number D17PC00287.
# The U.S. Government is authorized to reproduce and distribute copies of this work for Governmental purposes.
# ===============================================================================================================
import os
import json
from lib.rpc_model import RPCModel
from lib.gen_grid import gen_grid
from lib.solve_affine import solve_affine
from lib.solve_perspective import solve_perspective
import numpy as np
from pyquaternion import Quaternion
from lib.check_error import check_perspective_error
import logging
from lib.latlon_utm_converter import eastnorth_to_latlon
from coordinate_system import global_to_local
def discretize_volume(work_dir):
bbx_file = os.path.join(work_dir, 'aoi.json')
with open(bbx_file) as fp:
bbx = json.load(fp)
ul_easting = bbx['ul_easting']
ul_northing = bbx['ul_northing']
lr_easting = bbx['lr_easting']
lr_northing = bbx['lr_northing']
zone_number = bbx['zone_number']
hemisphere = bbx['hemisphere']
alt_min = bbx['alt_min']
alt_max = bbx['alt_max']
# each grid-cell is about 5 meters * 5 meters * 5 meters
xy_axis_grid_points = 100
z_axis_grid_points = 20
# create north_east_height grid
# note that this is a left-handed coordinate system
north_points = np.linspace(ul_northing, lr_northing, xy_axis_grid_points)
east_points = np.linspace(ul_easting, lr_easting, xy_axis_grid_points)
alt_points = np.linspace(alt_min, alt_max, z_axis_grid_points)
north_points, east_points, alt_points = gen_grid(north_points, east_points, alt_points)
# convert to lat lon
lat_points, lon_points = eastnorth_to_latlon(east_points, north_points, zone_number, hemisphere)
# convert to local utm
ll_easting = ul_easting
ll_northing = lr_northing
xx_utm = east_points - ll_easting
yy_utm = north_points - ll_northing
zz_utm = alt_points
# convert to enu
latlonalt = np.hstack((lat_points, lon_points, alt_points))
utm_local = np.hstack((xx_utm, yy_utm, zz_utm))
xx_enu, yy_enu, zz_enu = global_to_local(work_dir, lat_points, lon_points, alt_points)
enu = np.hstack((xx_enu, yy_enu, zz_enu))
return latlonalt, utm_local, enu
class CameraApprox(object):
def __init__(self, work_dir):
self.work_dir = work_dir
self.latlonalt, self.utm_local, self.enu = discretize_volume(work_dir)
self.img_names = []
self.rpc_models = []
self.region_dicts = []
metas_subdir = os.path.join(self.work_dir, 'metas/')
for item in sorted(os.listdir(metas_subdir)):
self.img_names.append(item[:-5] + '.png')
with open(os.path.join(metas_subdir, item)) as fp:
self.rpc_models.append(RPCModel(json.load(fp)))
self.cnt = len(self.rpc_models)
self.out_dir = os.path.join(work_dir, 'approx_camera')
if not os.path.exists(self.out_dir):
os.mkdir(self.out_dir)
def approx_affine_latlonalt(self):
logging.info('deriving an affine camera approximation...')
logging.info('scene coordinate frame is in lat, lon, alt')
lat_points = self.latlonalt[:, 0:1]
lon_points = self.latlonalt[:, 1:2]
alt_points = self.latlonalt[:, 2:3]
affine_dict = {}
for i in range(self.cnt):
col, row = self.rpc_models[i].projection(lat_points, lon_points, alt_points)
# make sure all the points lie inside the image
width = self.rpc_models[i].width
height = self.rpc_models[i].height
keep_mask = np.logical_and(col >= 0, row >= 0)
keep_mask = np.logical_and(keep_mask, col < width)
keep_mask = np.logical_and(keep_mask, row < height)
P = solve_affine(lat_points, lon_points, alt_points, col, row, keep_mask)
# write to file
img_name = self.img_names[i]
P = list(P.reshape((8,)))
affine_dict[img_name] = [width, height] + P
with open(os.path.join(self.out_dir, 'affine_latlonalt.json'), 'w') as fp:
json.dump(affine_dict, fp, indent=2)
bbx = { 'lat_min': np.min(lat_points),
'lat_max': np.max(lat_points),
'lon_min': np.min(lon_points),
'lon_max': np.max(lon_points),
'alt_min': np.min(alt_points),
'alt_max': np.max(alt_points)}
with open(os.path.join(self.out_dir, 'bbx_latlonalt.json'), 'w') as fp:
json.dump(bbx, fp, indent=2)
def approx_perspective_enu(self):
logging.info('deriving a perspective camera approximation...')
logging.info('scene coordinate frame is in ENU')
perspective_dict = {}
errors_txt = 'img_name, mean_proj_err (pixels), median_proj_err (pixels), max_proj_err (pixels), mean_inv_proj_err (meters), median_inv_proj_err (meters), max_inv_proj_err (meters)\n'
lat_points = self.latlonalt[:, 0:1]
lon_points = self.latlonalt[:, 1:2]
alt_points = self.latlonalt[:, 2:3]
xx = self.enu[:, 0:1]
yy = self.enu[:, 1:2]
zz = self.enu[:, 2:3]
for i in range(self.cnt):
col, row = self.rpc_models[i].projection(lat_points, lon_points, alt_points)
# make sure all the points lie inside the image
width = self.rpc_models[i].width
height = self.rpc_models[i].height
keep_mask = np.logical_and(col >= 0, row >= 0)
keep_mask = np.logical_and(keep_mask, col < width)
keep_mask = np.logical_and(keep_mask, row < height)
K, R, t = solve_perspective(xx, yy, zz, col, row, keep_mask)
qvec = Quaternion(matrix=R)
# fx, fy, cx, cy, s, qvec, t
params = [width, height, K[0, 0], K[1, 1], K[0, 2], K[1, 2], K[0, 1],
qvec[0], qvec[1], qvec[2], qvec[3],
t[0, 0], t[1, 0], t[2, 0]]
img_name = self.img_names[i]
perspective_dict[img_name] = params
# check approximation error
tmp = check_perspective_error(xx, yy, zz, col, row, K, R, t, keep_mask)
errors_txt += '{}, {}, {}, {}, {}, {}, {}\n'.format(img_name, tmp[0], tmp[1], tmp[2], tmp[3], tmp[4], tmp[5])
with open(os.path.join(self.out_dir, 'perspective_enu.json'), 'w') as fp:
json.dump(perspective_dict, fp, indent=2)
with open(os.path.join(self.out_dir, 'perspective_enu_error.csv'), 'w') as fp:
fp.write(errors_txt)
bbx = { 'xx_min': np.min(xx),
'xx_max': np.max(xx),
'yy_min': np.min(yy),
'yy_max': np.max(yy),
'zz_min': np.min(zz),
'zz_max': np.max(zz)}
with open(os.path.join(self.out_dir, 'bbx_enu.json'), 'w') as fp:
json.dump(bbx, fp, indent=2)
if __name__ == '__main__':
pass