-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDashboard_Functions.py
286 lines (225 loc) · 11 KB
/
Dashboard_Functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import yfinance as yf
from plotly.subplots import make_subplots
def get_price(ticker, start_date, end_date):
"""Return a DataFrame with price information (open, high, low, close, adjusted close, and volume) for the ticker between the specified dates."""
df = yf.download(ticker, start_date, end_date, progress=False)
df.reset_index(inplace=True)
return df
def get_info_df(ticker):
"""Return a DataFrame with various pieces of information (e.g. business summary, volume, market capitalisation, etc.) for the asset."""
info_dict = yf.Ticker(ticker).info
columns_dict = {'longName': 'Name',
'name': 'Name',
'symbol': 'Ticker',
'description': 'Summary',
'longBusinessSummary': 'Summary',
'industry': 'Ιndustry',
'previousClose': 'Previous Close',
'open': 'Open',
'fiftyTwoWeekLow': '52-week Low',
'fiftyTwoWeekHigh': '52-week High',
'volume': 'Volume (M)',
'averageVolume': 'Average Volume (M)',
'marketCap': 'Market Cap. (M)',
'trailingPE': 'PE Ρatio (TTM)',
'trailingEps': 'EPS (TTM)',
'logo_url': 'Logo URL'}
# Some keys are not common for all assets, therefore we need to check for each ticker.
columns, values = [], []
for key, value in columns_dict.items():
try:
values.append(info_dict[key])
columns.append(value)
except:
pass
info_df = pd.DataFrame(values, index=columns, columns=['Info'])
info_df.loc[['Volume (M)', 'Average Volume (M)', 'Market Cap. (M)']] = info_df.loc[[
'Volume (M)', 'Average Volume (M)', 'Market Cap. (M)']].apply(lambda x: x/1_000_000) # Normalise to millions.
info_df.loc['Market Cap. (M)'] = info_df.loc['Market Cap. (M)'].apply(
lambda x: np.round(x, 1))
return info_df
def get_closed_dates(df):
"""Return a list containing all dates on which the stock market was closed."""
# Create a dataframe that contains all dates from the start until today.
timeline = pd.date_range(start=df['Date'].iloc[0], end=df['Date'].iloc[-1])
# Create a list of the dates existing in the dataframe.
df_dates = [day.strftime('%Y-%m-%d') for day in pd.to_datetime(df['Date'])]
# Finally, determine which dates from the 'timeline' do not exist in our dataframe.
closed_dates = [
day for day in timeline.strftime('%Y-%m-%d').tolist()
if not day in df_dates
]
return closed_dates
def get_MACD(df, column='Adj Close'):
"""Return a DataFrame with the MACD indicator and related information (signal line and histogram)."""
df['EMA-12'] = df[column].ewm(span=12, adjust=False).mean()
df['EMA-26'] = df[column].ewm(span=26, adjust=False).mean()
# MACD Indicator = 12-Period EMA − 26-Period EMA.
df['MACD'] = df['EMA-12'] - df['EMA-26']
# Signal line = 9-day EMA of the MACD line.
df['Signal'] = df['MACD'].ewm(span=9, adjust=False).mean()
# Histogram = MACD - Indicator.
df['Histogram'] = df['MACD'] - df['Signal']
return df
def get_RSI(df, column='Adj Close', time_window=14):
"""Return a DataFrame with the RSI indicator for the specified time window."""
diff = df[column].diff(1)
# This preservers dimensions off diff values.
up_chg = 0 * diff
down_chg = 0 * diff
# Up change is equal to the positive difference, otherwise equal to zero.
up_chg[diff > 0] = diff[diff > 0]
# Down change is equal to negative deifference, otherwise equal to zero.
down_chg[diff < 0] = diff[diff < 0]
# We set com = time_window-1 so we get decay alpha=1/time_window.
up_chg_avg = up_chg.ewm(com=time_window - 1,
min_periods=time_window).mean()
down_chg_avg = down_chg.ewm(com=time_window - 1,
min_periods=time_window).mean()
RS = abs(up_chg_avg / down_chg_avg)
df['RSI'] = 100 - 100 / (1 + RS)
return df
def get_trading_strategy(df, column='Adj Close'):
"""Return the Buy/Sell signal on the specified (price) column (Default = 'Adj Close')."""
buy_list, sell_list = [], []
flag = False
for i in range(0, len(df)):
if df['MACD'].iloc[i] > df['Signal'].iloc[i] and flag == False:
buy_list.append(df[column].iloc[i])
sell_list.append(np.nan)
flag = True
elif df['MACD'].iloc[i] < df['Signal'].iloc[i] and flag == True:
buy_list.append(np.nan)
sell_list.append(df[column].iloc[i])
flag = False
else:
buy_list.append(np.nan)
sell_list.append(np.nan)
# Store the buy and sell signals/lists into the DataFrame.
df['Buy'] = buy_list
df['Sell'] = sell_list
return df
def plot_candlestick_chart(fig, df, row, column=1, plot_EMAs=True, plot_strategy=True):
"""Return a graph object figure containing a Candlestick chart in the specified row."""
fig.add_trace(go.Candlestick(x=df['Date'],
open=df['Open'],
high=df['High'],
low=df['Low'],
close=df['Close'],
name='Candlestick Chart'),
row=row,
col=column)
# If the boolean argument plot_EMAs is True, then show the line plots for the two exponential moving averages.
if (plot_EMAs == True):
fig.add_trace(go.Scatter(x=df['Date'],
y=df['EMA-12'],
name='12-period EMA',
line=dict(color='dodgerblue', width=2)),
row=row,
col=column)
fig.add_trace(go.Scatter(x=df['Date'],
y=df['EMA-26'],
name='26-period EMA',
line=dict(color='whitesmoke', width=2)),
row=row,
col=column)
# Similarly, if the boolean argument plot_strategy is True, then show the Buy/Sell signals.
if (plot_strategy == True):
fig.add_trace(go.Scatter(x=df['Date'],
y=df['Buy'],
name='Buy Signal',
mode='markers',
marker_symbol='triangle-up',
marker=dict(size=9),
line=dict(color='Lime')),
row=row,
col=column)
fig.add_trace(go.Scatter(x=df['Date'],
y=df['Sell'],
name='Sell Signal',
mode='markers',
marker_symbol='triangle-down',
marker=dict(size=9, color='Yellow')),
row=row,
col=column)
fig.update_xaxes(rangeslider={'visible': False})
fig.update_yaxes(title_text='Price ($)', row=row, col=column)
return fig
def plot_MACD(fig, df, row, column=1):
"""Return a graph object figure containing the MACD indicator, the signal line, and a histogram in the specified row."""
df['Hist-Color'] = np.where(df['Histogram'] < 0, 'red', 'green')
fig.add_trace(go.Bar(x=df['Date'],
y=df['Histogram'],
name='Histogram',
marker_color=df['Hist-Color'],
showlegend=True),
row=row,
col=column)
fig.add_trace(go.Scatter(x=df['Date'],
y=df['MACD'],
name='MACD',
line=dict(color='darkorange', width=2.5)),
row=row,
col=column)
fig.add_trace(go.Scatter(x=df['Date'],
y=df['Signal'],
name='Signal',
line=dict(color='cyan', width=2.5)),
row=row,
col=column)
fig.update_yaxes(title_text='MACD', row=row, col=column)
return fig
def plot_RSI(fig, df, row, column=1):
"""Return a graph object figure containing the RSI indicator in the specified row."""
fig.add_trace(go.Scatter(x=df['Date'].iloc[30:],
y=df['RSI'].iloc[30:],
name='RSI',
line=dict(color='gold', width=2)),
row=row,
col=column)
fig.update_yaxes(title_text='RSI', row=row, col=column)
# Add one red horizontal line at 70% (overvalued) and green line at 30% (undervalued).
for y_pos, color in zip([70, 30], ['Red', 'Green']):
fig.add_shape(x0=df['Date'].iloc[1],
x1=df['Date'].iloc[-1],
y0=y_pos,
y1=y_pos,
type='line',
line=dict(color=color, width=2),
row=row,
col=column)
# Add a text box for each line.
for y_pos, text, color in zip([64, 36], ['Overvalued', 'Undervalued'], ['Red', 'Green']):
fig.add_annotation(x=df['Date'].iloc[int(df['Date'].shape[0] / 10)],
y=y_pos,
text=text,
font=dict(size=14, color=color),
bordercolor=color,
borderwidth=1,
borderpad=2,
bgcolor='lightsteelblue',
opacity=0.75,
showarrow=False,
row=row,
col=column)
# Update the y-axis limits.
ymin = 25 if df['RSI'].iloc[30:].min() > 25 else df['RSI'].iloc[30:].min() - 5
ymax = 75 if df['RSI'].iloc[30:].max() < 75 else df['RSI'].iloc[30:].max() + 5
fig.update_yaxes(range=[ymin, ymax], row=row, col=column)
return fig
def plot_volume(fig, df, row, column=1):
"""Return a graph object figure containing the volume chart in the specified row."""
fig.add_trace(go.Bar(x=df['Date'],
y=df['Volume'],
marker=dict(color='lightskyblue',
line=dict(color='firebrick', width=0.1)),
showlegend=False,
name='Volume'),
row=row,
col=column)
fig.update_xaxes(title_text='Date', row=4, col=1)
fig.update_yaxes(title_text='Volume ($)', row=row, col=column)
return fig