-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathodir_model_advanced.py
36 lines (33 loc) · 1.56 KB
/
odir_model_advanced.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Copyright 2019-2020 Jordi Corbilla. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from tensorflow.keras import models, layers
from odir_model_base import ModelBase
class Advanced(ModelBase):
def compile(self):
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=self.input_shape))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Dropout(0.2))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Dropout(0.2))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(8, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=self.metrics)
self.show_summary(model)
self.plot_summary(model, 'model_advanced.png')
return model