forked from StanfordMSL/Neural-Network-Reach
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvanderpol_roa.jl
226 lines (170 loc) · 6.14 KB
/
vanderpol_roa.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
using Plots, FileIO, JLD2
include("reach.jl")
include("invariance.jl")
### VAN DER POL LIMIT CYCLE ###
RK_f(S) = [-S[2], S[1] + S[2]*(S[1]^2 - 1)] # reverse time. ROA is a nonconvex subset of a square of +- 3 around the origin
function RK_update(S, dt)
k1 = RK_f(S)
k2 = RK_f(S + dt*0.5*k1)
k3 = RK_f(S + dt*0.5*k2)
k4 = RK_f(S + dt*k3)
return S + (dt/6)*(k1 + 2*k2 + 2*k3 + k4)
end
function rollout(x0, steps, dt)
traj = Matrix{Float64}(undef, steps, 2)
traj[1,:] = x0
for i in 2:steps
traj[i,:] = RK_update(traj[i-1,:], dt)
end
return traj
end
function add_limit_cycle(plt)
traj = rollout([-2.0086212, 0.0], 135, 0.05)
plot!(plt, traj[:,1], traj[:,2], label=false, color="blue")
end
### CONSTRAINTS ###
function input_constraints_vanderpol(type::String)
# Each input specification is in the form Ax≤b
if type == "box"
in_dim = 2
A_pos = Matrix{Float64}(I, in_dim, in_dim)
A_neg = Matrix{Float64}(-I, in_dim, in_dim)
A = vcat(A_pos, A_neg)
b = [2.5, 3.0, 2.5, 3.0]
elseif type == "large_box"
in_dim = 2
A_pos = Matrix{Float64}(I, in_dim, in_dim)
A_neg = Matrix{Float64}(-I, in_dim, in_dim)
A = vcat(A_pos, A_neg)
b = [7.0, 7.0, 7.0, 7.0]
elseif type == "hexagon"
A = [1 0; -1 0; 0 1; 0 -1; 1 1; -1 1; 1 -1; -1 -1]
b = [5, 5, 5, 5, 8, 8, 8, 8]
else
error("Invalid input constraint specification.")
end
return A, b
end
function output_constraints_vanderpol(type::String)
# Each output specification is in the form Ay≤b
if type == "origin"
A = [1. 0.; -1. 0.; 0. 1.; 0. -1.]
b = [1., 1., 1., 1.]
else
error("Invalid input constraint specification.")
end
return A, b
end
### PLOTTING ###
function plot_hrep_vanderpol(ap2constraints; type="normal")
# Plot all polytopes
plt = plot(reuse = false, legend=false)
for ap in keys(ap2constraints)
A, b = ap2constraints[ap]
reg = HPolytope(constraints_list(A, b))
# sanity check
if isempty(reg)
@show reg
error("Empty polyhedron.")
end
# static or gif plot
if type == "normal"
plot!(plt, reg, xlabel="x₁", ylabel="x₂", xlims=(-2.5, 2.5), ylims=(-3, 3), fontfamily=font(40, "Computer Modern"), yguidefont=(14) , xguidefont=(14), tickfont = (12))
elseif type == "gif"
plot!(plt, reg, xlabel="x₁", ylabel="x₂", xlims=(-3, 3), ylims=(-3, 3), fontfamily=font(40, "Computer Modern"), yguidefont=(14) , xguidefont=(14), tickfont = (12))
end
end
return plt
end
# make gif of backwards reachable set over time
function BRS_gif(nn_weights, nn_params, Aᵢ, bᵢ, Aₛ, bₛ, steps)
plt = plot(HPolytope(constraints_list(Aₛ, bₛ)), xlims=(-2.5, 2.5), ylims=(-3, 3))
anim = @animate for Step in 2:steps
weights = pytorch_net(nn_weights, nn_params, Step)
ap2input, ap2output, ap2map, ap2backward = compute_reach(weights, Aᵢ, bᵢ, [Aₛ], [bₛ], back=true)
plt = plot_hrep_vanderpol(ap2backward[1], type="gif")
end
gif(anim, string("vanderpol_brs_",steps ,".gif"), fps = 2)
end
# make figure of BRSs from paper
function vanderpol_fig(steps, brs_dict)
plots = []
for step in steps
plt = plot_hrep_vanderpol(brs_dict[string(step)])
plt = add_limit_cycle(plt)
push!(plots, plt)
end
subplots = plot(plots..., layout=(3, 2), xlims=(-7, 7), ylims=(-7, 7), size=(4*3*96, 3*4*4*96/3))
return subplots
end
### REGION OF ATTRACTION ###
function get_BRSs(steps; connected=true)
ap2constraints_vec = []
Aᵢ, bᵢ = input_constraints_vanderpol("box")
A_roa = Matrix{Float64}(matread("models/vanderpol/vanderpol_seed.mat")["A_roa"])
b_roa = Vector{Float64}(matread("models/vanderpol/vanderpol_seed.mat")["b_roa"])
fp = matread("models/vanderpol/vanderpol_seed.mat")["fp"]
for copies in steps
nn_weights = "models/vanderpol/weights.npz"
nn_params = "models/vanderpol/norm_params.npz"
weights = pytorch_net(nn_weights, nn_params, copies)
# Run algorithm
@time begin
ap2input, ap2output, ap2map, ap2backward = compute_reach(weights, Aᵢ, bᵢ, [A_roa], [b_roa], fp=fp, back=true, connected=connected, check_aps=false)
end
@show length(ap2input)
@show length(ap2backward[1])
push!(ap2constraints_vec, ap2backward[1])
end
return ap2constraints_vec
end
### SCRIPTING ###
# Make Figure in Paper
# brs_dict = load("models/vanderpol/BRSs.jld2")
# steps = [5, 10, 15, 20, 25, 30]
# subplots = vanderpol_fig(steps, brs_dict)
# or compute one of the ROAs
# find explicit PWA representation
# load network weights
nn_weights = "models/vanderpol/weights.npz"
nn_params = "models/vanderpol/norm_params.npz"
weights = pytorch_net(nn_weights, nn_params, 1)
# set domain, output constraints
Aᵢ, bᵢ = input_constraints_vanderpol("box")
Aₒ, bₒ = output_constraints_vanderpol("origin")
# solve for explicit PWA representation
@time begin
ap2input, ap2output, ap2map, ap2backward, ap2neighbors = compute_reach(weights, Aᵢ, bᵢ, [Aₒ], [bₒ], graph=true)
end
@show length(ap2input)
# plot input space
plt_in = plot_hrep_vanderpol(ap2input)
# check homeomorphic property
@time begin
print("NN is homeomorphic: ", is_homeomorphism(ap2map, 2))
end
# load seed ROA used in paper
A_roa = Matrix{Float64}(matread("models/vanderpol/vanderpol_seed.mat")["A_roa"])
b_roa = Vector{Float64}(matread("models/vanderpol/vanderpol_seed.mat")["b_roa"])
# or find new seed ROA
# @time begin
# fixed_points, fp_dict = find_fixed_points(ap2map, ap2input, weights)
# fp, C, d, Aₓ, bₓ = find_attractor(fixed_points, fp_dict)
# end
# @time begin
# A_roa, b_roa = polytope_roa_sdp(Aₓ, bₓ, C, fp, 25)
# end
# plot seed ROA
plt_seed = plot(HPolyhedron(constraints_list(A_roa, b_roa)))
# solve for t-step ROAs via backward reachability
steps = [10]
ap2constraints_vec = get_BRSs(steps, connected=true)
plt_brs = add_limit_cycle(plot_hrep_vanderpol(ap2constraints_vec[1]))
# save BRSs
# save("models/vanderpol/BRSs.jld2", Dict("5" => ap2constraints_vec[1], "10" => ap2constraints_vec[2],
# "15" => ap2constraints_vec[3], "20" => ap2constraints_vec[4],
# "25" => ap2constraints_vec[5], "30" => ap2constraints_vec[6]))
# save pwa_dict
# save("models/vanderpol/vanderpol_pwa_large.jld2", Dict("Ai" => Aᵢ, "bi" => bᵢ,
# "ap2map" => ap2map, "ap2input" => ap2input, "ap2neighbors" => ap2neighbors,
# "ap_fp" => ap_fp, "seed_roa" => (A_roa, b_roa)))