forked from StanfordMSL/Neural-Network-Reach
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpwa_back_reach.jl
167 lines (131 loc) · 4.96 KB
/
pwa_back_reach.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#=
This file is used for performing traditional backward reachability of homeomorphic PWA functions.
We can't use other implementations, such as from MPT, because they don't take advantage of
the homeomorphic property of the PWA function.
=#
using LinearAlgebra, JuMP, GLPK, LazySets, MATLAB, FileIO, Plots
include("merge_poly.jl")
# Solve a feasibility LP to check if two polyhedron intersect
function poly_intersection(A₁, b₁, A₂, b₂; presolve=false)
dim = max(size(A₁,2), size(A₂,2)) # In the case one of them is empty
model = Model(GLPK.Optimizer)
presolve ? set_optimizer_attribute(model, "presolve", 1) : nothing
@variable(model, x[1:dim])
@objective(model, MOI.FEASIBILITY_SENSE, 0)
@constraint(model, A₁*x .≤ b₁)
@constraint(model, A₂*x .≤ b₂)
optimize!(model)
if termination_status(model) == MOI.INFEASIBLE # no intersection
return false
elseif termination_status(model) == MOI.OPTIMAL # intersection
return true
elseif termination_status(model) == MOI.NUMERICAL_ERROR && !presolve
return poly_intersection(A₁, b₁, A₂, b₂, presolve=true)
else
@show termination_status(model)
@show A₁; @show b₁; @show A₂; @show b₂
error("Intersection LP error!")
end
end
# Plot union of polytopes
function plot_polytopes(polytopes)
# plt = plot(reuse = false, legend=false, xlabel="x₁", ylabel="x₂", xlims=[-1.175, -1.0], ylims=[-0.5, 0.2])
plt = plot(reuse = false, legend=false, xlabel="Crosstrack Position (m.)", ylabel="Heading Angle (deg.)")
for (A, b) in polytopes
reg = HPolytope(constraints_list(A, b))
if isempty(reg)
@show reg
error("Empty polyhedron.")
end
plot!(plt, reg, fontfamily=font(40, "Computer Modern"), yguidefont=(14) , xguidefont=(14), tickfont = (12))
end
return plt
end
#=
This function computes an i-step BRS, given a saved (i-1)-step step BRS.
merge flag controls whether BRS polytopes are merged before returning result.
save flag controls whether the resulting i-step BRS is saved to file
=#
function backward_reach(pwa_dict, pwa_info, i; Save=false, verbose=false)
verbose ? println("Computing ", i, "-step BRS.") : nothing
# load in homeomorphic PWA function
ap2map = pwa_dict["ap2map"]
ap2input = pwa_dict["ap2input"]
ap2neighbors = pwa_dict["ap2neighbors"]
# load in set to find preimage of
brs_dict = load(string("models/taxinet/1Hz_2nd/taxinet_brs_", i-1, "_step_overlap.jld2"))
output_polytopes = brs_dict["brs"]
# find ap for cell that fp lives in
ap = pwa_info["ap"]
working_set = Set{Vector{BitVector}}() # APs we want to explore
explored_set = Set{Vector{BitVector}}() # APs we have already explored
brs_polytopes = Set{Tuple{Matrix{Float64},Vector{Float64}}}() # backward reachable set, stored as a collection of polytopes
push!(working_set, ap)
# traverse connected input space to enumerate brs_polytopes
while !isempty(working_set)
in_brs = false
ap = pop!(working_set)
push!(explored_set, ap)
C, d = ap2map[ap]
A, b = ap2input[ap]
# check intersection with preimage of each polytope in output set
for (Aₒ, bₒ) in output_polytopes
Aᵤ, bᵤ = (Aₒ*C, bₒ-Aₒ*d) # compute preimage polytope
if poly_intersection(A, b, Aᵤ, bᵤ)
push!(brs_polytopes, (vcat(A, Aᵤ), vcat(b, bᵤ)))
in_brs = true
end
end
# if a subset of Ax≤b is in the brs_polytopes then add neighbor APs to the working set
if in_brs
for neighbor_ap in ap2neighbors[ap]
if neighbor_ap ∉ explored_set && neighbor_ap ∉ working_set
push!(working_set, neighbor_ap)
end
end
end
end
# optimal merging of polytopes in BRS
# if length(brs_polytopes) > 1
# brs_polytopes = merge_polytopes(brs_polytopes; verbose=verbose)
# end
# save the i-step brs
if Save
save(string("models/taxinet/1Hz_2nd/taxinet_brs_", i, "_step_overlap.jld2"), Dict("brs" => brs_polytopes))
end
verbose ? println(length(brs_polytopes), " in the BRS.") : nothing
return brs_polytopes
end
### Scripting ###
pwa_dict = load("models/taxinet/1Hz_2nd/pwa_map.jld2")
pwa_info = load("models/taxinet/1Hz_2nd/pwa_info.jld2")
start_steps = 11
end_steps = 11
Save = false
stats = load("models/taxinet/1Hz_2nd/stats_overlap.jld2")
times = stats["times"]
poly_counts = stats["poly_counts"]
# To compute multiple steps #
for i in start_steps:end_steps
println("\n")
brs_polytopes, t, bytes, gctime, memallocs = @timed backward_reach(pwa_dict, pwa_info, i; Save=Save, verbose=true)
if length(times) == length(poly_counts)
if i ≤ length(times)
times[i] = t
poly_counts[i] = length(brs_polytopes)
elseif i == length(times)+1
push!(times, t)
push!(poly_counts, length(brs_polytopes))
end
end
if Save
save("models/taxinet/1Hz_2nd/stats_overlap.jld2", Dict("times" => times, "poly_counts" => poly_counts))
end
println("total time: ", t)
end
## To plot a BRS ##
# i = 10
# brs_dict = load(string("models/taxinet/1Hz_2nd/taxinet_brs_", i, "_step_overlap.jld2"))
# output_polytopes = brs_dict["brs"]
# plt = plot_polytopes(output_polytopes)
# savefig(plt, string(i, ".png"))