forked from StanfordMSL/Neural-Network-Reach
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnnet.jl
223 lines (199 loc) · 7.01 KB
/
nnet.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
export NNet, evaluate_network, evaluate_network_multiple, num_inputs, num_outputs
"""
Custom type that represents a fully connected ReLU network from a .nnet file
Args:
file (string): A .nnet file to load
Attributes:
numLayers (int): Number of weight matrices or bias vectors in neural network
layerSizes (list of ints): Size of input layer, hidden layers, and output layer
inputSize (int): Size of input
outputSize (int): Size of output
mins (list of floats): Minimum values of inputs
maxes (list of floats): Maximum values of inputs
means (list of floats): Means of inputs and mean of outputs
ranges (list of floats): Ranges of inputs and range of outputs
weights (list of arrays): Weight matrices in network
biases (list of arrays): Bias vectors in network
"""
mutable struct NNet
weights::Array{Any,1}
biases::Array{Any,1}
numLayers::Int32
layerSizes::Array{Int32,1}
inputSize::Int32
outputSize::Int32
mins::Array{Float64,1}
maxes::Array{Float64,1}
means::Array{Float64,1}
ranges::Array{Float64,1}
function NNet(file::AbstractString)
this = new()
# Open file for reading
f = open(file)
# Skip any header lines
line = readline(f)
while line[1:2]=="//"
line = readline(f)
end
# Read information about the neural network
record = split(line,[',','\n'])
this.numLayers = parse(Int32,record[1])
this.inputSize = parse(Int32,record[2])
this.outputSize = parse(Int32,record[3])
line = readline(f)
record = split(line,[',','\n'])
this.layerSizes = zeros(this.numLayers+1)
for i=1:(this.numLayers+1)
this.layerSizes[i]=parse(Int32,record[i])
end
# Skip unused line
line = readline(f)
line = readline(f)
record = split(line,[',','\n'])
this.mins = zeros(this.inputSize)
for i=1:(this.inputSize)
this.mins[i]=parse(Float64,record[i])
end
line = readline(f)
record = split(line,[',','\n'])
this.maxes = zeros(this.inputSize)
for i=1:(this.inputSize)
this.maxes[i]=parse(Float64,record[i])
end
line = readline(f)
record = split(line,[',','\n'])
this.means = zeros(this.inputSize+1)
for i=1:(this.inputSize+1)
this.means[i]=parse(Float64,record[i])
end
line = readline(f)
record = split(line,[',','\n'])
this.ranges = zeros(this.inputSize+1)
for i=1:(this.inputSize+1)
this.ranges[i]=parse(Float64,record[i])
end
# Initialize weight and bias arrays
this.weights = Any[zeros(this.layerSizes[2],this.layerSizes[1])]
this.biases = Any[zeros(this.layerSizes[2])]
for i=2:this.numLayers
this.weights = [this.weights;Any[zeros(this.layerSizes[i+1],this.layerSizes[i])]]
this.biases = [this.biases;Any[zeros(this.layerSizes[i+1])]]
end
# Fill weight and bias arrays with values from nnet file
layer=1
i=1
j=1
line = readline(f)
record = split(line,[',','\n'])
while !eof(f)
while i<=this.layerSizes[layer+1]
while record[j]!=""
this.weights[layer][i,j] = parse(Float64,record[j])
j=j+1
end
j=1
i=i+1
line = readline(f)
record = split(line,[',','\n'])
end
i=1
while i<=this.layerSizes[layer+1]
this.biases[layer][i] = parse(Float64,record[1])
i=i+1
line = readline(f)
record = split(line,[',','\n'])
end
layer=layer+1
i=1
j=1
end
close(f)
return this
end
end
"""
Evaluate network using given inputs
Args:
nnet (NNet): Neural network to evaluate
inputs (array): Network inputs to be evaluated
Returns:
(array): Network output
"""
function evaluate_network(nnet::NNet,input::Array{Float64,1})
numLayers = nnet.numLayers
inputSize = nnet.inputSize
outputSize = nnet.outputSize
biases = nnet.biases
weights = nnet.weights
# Prepare the inputs to the neural network
inputs = zeros(inputSize)
for i = 1:inputSize
if input[i]<nnet.mins[i]
inputs[i] = (nnet.mins[i]-nnet.means[i])/nnet.ranges[i]
elseif input[i] > nnet.maxes[i]
inputs[i] = (nnet.maxes[i]-nnet.means[i])/nnet.ranges[i]
else
inputs[i] = (input[i]-nnet.means[i])/nnet.ranges[i]
end
end
# Evaluate the neural network
for layer = 1:numLayers-1
temp = max.(*(weights[layer],inputs[1:nnet.layerSizes[layer]])+biases[layer],0)
inputs = temp
end
outputs = *(weights[end],inputs[1:nnet.layerSizes[end-1]])+biases[end]
# Undo output normalization
for i=1:outputSize
outputs[i] = outputs[i]*nnet.ranges[end]+nnet.means[end]
end
return outputs
end
"""
Evaluate network using multiple sets of inputs
Args:
nnet (NNet): Neural network to evaluate
inputs (array): Network inputs to be evaluated
Returns:
(array): Network outputs for each set of inputs
"""
function evaluate_network_multiple(nnet::NNet,input::Array{Float64,2})
numLayers = nnet.numLayers
inputSize = nnet.inputSize
outputSize = nnet.outputSize
biases = nnet.biases
weights = nnet.weights
# Prepare the inputs to the neural network
_,numInputs = size(input)
inputs = zeros(inputSize,numInputs)
for i = 1:inputSize
for j = 1:numInputs
if input[i,j]<nnet.mins[i]
inputs[i,j] = (nnet.mins[i]-nnet.means[i])/nnet.ranges[i]
elseif input[i,j] > nnet.maxes[i]
inputs[i,j] = (nnet.maxes[i]-nnet.means[i])/nnet.ranges[i]
else
inputs[i,j] = (input[i,j]-nnet.means[i])/nnet.ranges[i]
end
end
end
# Evaluate the neural network
for layer = 1:numLayers-1
inputs = max.(*(weights[layer],inputs[1:nnet.layerSizes[layer],:])+*(biases[layer],ones(1,numInputs)),0)
end
outputs = *(weights[end],inputs[1:nnet.layerSizes[end-1],:])+*(biases[end],ones(1,numInputs))
# Undo output normalization
for i=1:outputSize
for j=1:numInputs
outputs[i,j] = outputs[i,j]*nnet.ranges[end]+nnet.means[end]
end
end
return outputs
end
""" Get number of inputs to network"""
function num_inputs(nnet::NNet)
return nnet.inputSize
end
""" Get number of outputs from network"""
function num_outputs(nnet::NNet)
return nnet.outputSize
end